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ABSTRACT

Chalcones are 1,3-diphenyl-2-propene-1-one, in fwhiwo aromatic rings are linked by a three carbay-
unsaturated carbonyl system. These are abundagdilsle plants and are considered to be precurséftasonoids
and isoflavonoids. Our objective is to study thiattenship between the activities and structur@xQSAR study
is applied to a set of 20 molecules for biologiaativity prediction derivatives. This study was docted using the
principal component analysis PCA method; the midtinear regression method MLR and the artificisdural
network ANN;The leave-one out cross-validation pthae was used to validate the ANN model for useptedict
the activity of others new compounds. The relewsscriptors obtained from the ANN showed a corietat
coefficient of 0.949 models which is a good residt.a result of quantitative structure—activityagbnships, we
found that the model proposed in this study is ttred of major descriptors used to describe th@séecules. The
obtained results suggested that the proposed catibim of several calculated parameters could befuls®
predict the biological activity of derivatives o8idiphenyl-2-propene-1-one.

Keywords: Biological activity; 3D-QSAR; PCA; MLR; ANN; DFtudy.

INTRODUCTION

Chalcones are 1,3-diphenyl-2-propene-1-one, in whigo aromatic rings are linked by a three carborp-
unsaturated carbonyl system as,They exhibit divéilogical activities, such as antimicrobial, aaticer,
antiprotozoal, antiulcer, anti-inflammatory, amouotters[1], and thus comprise a class with importhatapeutic
potential. Benzodiazepines derivatives have longnbé&nown for their wide range of therapeutic and
pharmacological properties. Nowadays, many membérdiazepine family are widely used as anticonvotisa
analgesic, sedative, antidepressive, and hypnggaota[2]. Benzodiazepine derivatives also find caruial use as
dyes for acrylic fibers [3] and [4] and some 2,4sgll-7,8-dimethyl-2,3-dihydro-1H-1,5-benzodiazerteave been
tested against breast cancer and have shown medetatity[5].

Cancer is a major public health problem and leadengse of death in many parts of the world. Deftita cancer
worldwide are projected to continue rising, withestimated 13.1 million deaths in 2030 [6].

Quantitative structure-activity relationship (QSAR}¥ an important area of chemometrics, has beesubject of a

series of investigations [7].
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The main aim of QSAR studies is to establish anigoab rule or function relating the structural deptors of
compounds under investigation to bioactivities.sTiile or function is then utilized to predict s@me bioactivities
of the compounds not involved in the training setf their structural descriptors. Whether the biwé@es can be
predicted with satisfactory accuracy depends toeatgextent on the performance of the applied raiitite data
analysis method, provided the property being ptediés related to the descriptors. Many multivaridata analysis
methods such as principal components analysis (R@d)artificial neural network (ANN) have been uge@SAR
studies. ANN offers satisfactory accuracy in mastes but tends to over fit the training data. Tleeeea large
number of molecular descriptors that can be useQ3#AR studies. Once validated, the findings caruged to
predict activities of untested compounds. Recentlymputer-assisted drug design based on QSAR has be
successfully employed to develop new drugs foitits@tment of cancer and other diseases [8].

After a QSAR model is built and validated, it careglict the biological activity of novel moleculesom their

structural properties. A QSAR model can also scigmentially active molecules from a database, essiibed in
the section on applications of the technique. Bseahe QSAR model can incorporate a wide rangeiffefreint

variables, be it physical, chemical or biologidakan also be utilized in industries apart frommgldesign [9], such
as toxicology [10], food chemistry [11] and othmids.

Within the currently ongoing search for effectivatieancer drugs candidates in the present studpave carried
out and established a reliable quantitative streetactivity relationship (QSAR) analysis based @nchalcones
derivatives.

MATERIALS AND METHODS

Experimental data

In our QSAR study, a total of 20chalcones molecuese gathered from the literature [12,13], The liGg, value,
concentration of the compoungM) exhibiting 50% inhibition of cell growth [14]of human colorectal cancer cell
line, HT-29, was employed as the dependent vari@idble 1).

All the compoundswere evaluated for their cytotoxéctivity by the 3-(4,5 dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay based otoahiondrial reduction of yellow MTT tetrazolium dye a
highly colored blue formazan product [15].The fallag figure 1 represents the basic structure chmeso

R O Ry
) (T 70 ;
Rj Rg
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Figure 1:Basic structure ofchalcones

Table 1: selected training set of chalcone derivates and their respective pl

Compound R R1 R2 R3 R4 R5 R6 Bb

1 H H NH, H Cl H Cl 1,602
2 H H OCH H Cl H Cl 1,276
3 OH H H H Cl H Cl 1,627
4 H H NH, H Cl H H 1,469
5 H H H H H H OCH 1,384
6 H H NH;, H H H OCH 1,746
7 H NH; H H H H OCH 1,631
8 H H OCH H H H OCH 1,691
9 H H H H H H OCH 1,775
10 H H H F H H OCH 2,005
11 H H NH, H F H H 1,68

12 H H OoCH H F H H 1,276
13 H H H H H H OH 1,391
14 H H OCH H H H OH 1,269
15 H H H H OCH H OCH 2,116
16 H H F F H OCH H 1,726
17 H H NH, H OCH OCH H 1,843
18 H NH; H H OCH OCH H 1,641
19 H H OCH H OCH OCH H 1,621
20 H H H H Ck H H 1,632
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Computational methods

DFT (density functional theory) methods were usedhis study. These methods have become very popula
recent years because they can reach similar psacisi other methods in less time and less cost ftoen
computational point of view. In agreement with ET results, energy of the fundamental state aflggbectronic
system can be expressed through the total electaemsity, and in fact, the use of electronic dgnisistead of
wave function for calculating the energy constisutee fundamental base of DFT [16-19], using thé-\B3
functional [19,20] and a 6-31G* basis set. The BB, ¥ version of DFT method, uses Becke's threempeater
functional (B3) and includes a mixture of HF wittFD exchange terms associated with the gradienectd
correlation functional of Lee, Yang and Parr (LYPhe geometry of all species under investigatios determined
by optimizing all geometrical variables without asyymmetry constraints.

Calculation of molecular descriptors

Calculation of molecular descriptors using Gaussian 03W

From the results of the DFT calculations, the quanthemical descriptors were obtained for the mbd#étling as
follows: the total energyHt (u.a.)), the highest occupied molecular orbitaérgg (Evomo (€V)), the lowest
unoccupied molecular orbital enerdl, ywo (eV)), the energy difference between the LUMO dhd HOMO
energy Gap (eV)), absorption maximum,,y, the total dipole moment of the molecule (Debye)), absolute
hardnesgy), absolute electron negativify) and reactivity indexd) [21]. (n),(x) and(w) were determined by the
following equations:

- X

nzw - _(BEimo *Eriomd) ®
. 2 . 21

2 X

Principal components analysis
Twenty molecules were studied by statistical meshbdsed on the principal component analysis (PQ2)23]
using the software XLSTAT 2009.

Essentially a descriptive statistical method whaétims to present, in graphic form, the maximum dbrimation
contained in the data (Table 1).

PCA is a statistical technique useful for summagzall the information encoded in the structuresahpounds. It
is also very helpful for understanding the disttibo of the compounds.

Multiple linear and nonlinear regressions (MLR andMNLR)

The multiple linear and nonlinear regression diatistechniques are used to study therelation Eriwene
dependent variable and several independent vasialblee multiple linear and non linear regressiordet® (MLR
and MNLR) are generated using the software XLST¥drsion 2009, to predict pkg

The optimal number of components (N) is employedidovalidation MLR and MNLR analysis to get thedin
model parameters such as correlation coefficiéns®ndard deviation (S) and Fischer test valu¢24)

Artificial neural networks (ANN)

The ANN analysis was performed with the use of Mlatsoftware version 7.0 using a program writterCin
language Neural toolbox on a data set of structafe®) chalcones derivatives [25,26]. A number radividual

models of ANN were designed built up and traineén&ally the network was built for three layerse dnput

layer, one hidden layer and one output layer weresidered [27]. The input layer was consisted gheartificial

neurons of linear activation function (Figure 2heTnumber of artificial neural in the hidden layess adjusted
experimentally. The hidden layer consisted of 2ffieial neural. One neuron formed the output lagérsigmoid

function activation. The architecture of the apgleNN models is presented in (Figure 3).

kX

Input Laver Hidden Laver Surpur Laver

Figure 2: Neuron Layout of ANN
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Hidden Layer Output Layer
Laput ' Output
L= o2t~ o 2~
; a ] :
20 1

Figure 3: The ANN architecture.

The data subjected to ANN analysis were randomiyddd into three sets: a learning set, a validagenand a
testing set. Prior to that, the whole data setseated within the 0-1 range.

The set of structures of 20 chalcones derivati?&$ fvas subjected to the ANN analysis. First, fa learning set
of compounds, i.e., selected training set of 20odme derivatives. The learning set of data is usedNN to
recognize the relationship between the input anguiwdata. Then for the revision of the ANN modesigned and
selected, the validation set of 20 compounds wasl.uesting set with eight compounds was provigdede an
independent evaluation of the ANN model performafueethe finally applied network. In this study, selected
the sigmoid as a basis function [29].

The operation of the output layer is linear, whigkjiven as below:
Ny
Y (X)= Zij h,(X)+b,
=

Where y is the K" output layer unit for the input vector XyMvis the weight connection between tfedutput unit
and the | hidden layer unit and,Hs the bias that allows a transfer function “n@me? given by the following
equation:

Bias = Z()_/— y)

Where y is the measured value gisdhe value predicted by the model.

The accuracy of the model was mainly evaluatedhgy root mean square error (RMSE). Formula is giaen
follows:

1 n
RMSE= \/E .Z(peXp ~Pored)”
i=1

Where n = number of compounds,4= experimental value,,pq = predicted value and summation is of overall
patterns in the analyzed data set [30,31]. Th@tscwere run on a personal PC.

RESULTS
Data for analysis
A QSAR study was carried for a series of 20 chadcderivatives, in order to determine a quantitatalationship

between structure and toxicity.

Table 2 shows the values of the calculated paramets#tained by DFT/B3LYP 6-31G* optimization of thridied
Selected training set of 20 chalcones derivatives.
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Table 2: Values of the twelve chemical descriptors

Molec. pl 50 Et Enovo  Enumo Gap n XL n (0] Ea Amax f(so‘
1 1,602 -44346 -5,806 -1,978 3,8280 3,8349 3,8917 1,9140 3,9565 4,2510 291,66 0,5404
2 1,276 -45422 -3,924 0,087 4,0107 2,3570 1,9182 2,0054 0,9174 3,7181 333,46 0,0606

3 1,627 -44887 -6,332 -2,185 4,1469 3,3212 4,2589 2,0734 4,374 4,0957 302,72 0,5792
4 1,469 -33879 -5,626 -1,763 3,8626 4,6616 3,6947 1,9313 3,5341 3,4537 358,99 0,0553
5 1,384 -20928 -5,856 -1,785 4,0709 4,2239 3,8206 2,0354 3,5858 3,8474 322,25 0,6661
6 1,746 -22435 -5,612 -1,527 4,0848 3,8558 3,5697 2,0424 3,1196 4,026 307,96 0,4213
7 1,631 -22435 -5,560 -1,678 3,8825 2,5075 3,6191 1,9412 3,3737 3,8781 319,71 0,6879
8 1,691 -24046 -5,770 -1,646 4,1240 2,9293 3,7078 2,0620 3,3336 3,7892 327,20 0,6445
9 1,775 -22976 -5,802 -1,657 4,1450 3,8229 3,7300 2,0725 3,3565 4,0080 309,34 0,6724
10 2,005 -26332 -6,009 -2,041 3,9680 5,2198 4,0251 1,9840 4,0831 3,7441 331,14 0,6124
11 1,680 -22019 -5,709 -1,716 3,9933 5,2873 3,7127 1,9966 3,4518 4,3396 285,70 0,4666
12 1,276 -23630 -6,109 -1,840 4,2697 4,3550 3,9745 2,1348 3,6997 4,3234 286,78 0,3799
13 1,391 -19858 -5,939 -1,816 4,1234 3,6236 3,8777 2,0617 3,6466 3,9149 316,70 0,6220
14 1,269 -22976 -5,849 -1,674 4,1749 2,445 3,7618 2,0875 3,3896 3,8213 324,46 0,5374
15 2,116 -24046 -5,595 -1,545 4,0502 5,4096 3,5704 2,0251 3,1474 3,7831 327,73 0,5717
16 1,726 -26332 -6,202 -2,135 4,0676 2,4557 4,1686 2,0338 4,2722 4,1078 301,82 0,3407
17 1,843 -25553 -5,651 -1,589 4,0619 4,1110 3,6198 2,0309 3,2259 3,6408 340,54 0,1999
18 1,641 -25553 -5,583 -1,750 3,8329 3,5899 3,6668 1,9164 3,5079 4,0830 303,66 0,1365
19 1,621 -27164 -6,037 -1,707 4,3301 2,8592 3,8724 2,1651 3,4630 3,8771 319,79 0,2886
20 1,632 -26987 -6,574 -2,086 4,4875 5,6475 4,3298 2,2438 4,1777 4,2796 289,71 0,4016

Correlation matrix
Table 2 shows the correlation matrix (Pearsonttr@jefor obtained between different descriptors.

Table 2: Correlation matrix (Pearson (n)) between dferent obtained descriptors

Et Enomo ELumo Gap n X n () Ea Amax fso) plsc
Et 1
Enowmo 0,206 1
ELumo 0,576 0,768 1
Gap 0,331 -0,688 -0,064 1
n 0,031 -0,074 -0,043 0,066 1
x -0,384 -0,958 -0,919 0,451 0,065 1
n 0,331 -0,688 -0,064 1,000 0,066 0,451 1
(0] -0,575 -0,781 -1,000 0,084 0,040 0,927 0,084 1
E, -0,235 -0,408 -0,426 0,153 0,091 0,441 0,153 0,427 1
Amax 0,213 0,408 0,416 -0,165 -0,055 -0,437 -0,165 9,41 -0,997 1
fso 0,080 -0,070 -0,053 0,049 -0,101 0,067 0,049 0,0570,144 -0,183 1
plsg 0,159 0,153 0,165 -0,051 0,323 -0,168 -0,051 -0,156:0,248 0,233 0,034 1

Bold values are different from 0 at a level sigrfit for p < 0.05
At a very significant for p < 0,01; At a highly si§icant to p < 0,001

Correlation circle

Principal component analysis (PCA) was also peréatrio detect the connection between the differanikbles.
The principal component analysis revealed fromdberelation circle (Figure 4) shows that the F1sai0.46%)
presents the energy of the variance while the Bi$20.11%) of the variance is located by the ogfs@ameters of
energy [21].

¥ andEpomo are perfectly correlated (r = 0,958), both vamsatdre redundant.
Amax @NdE, are strongly negatively correlated (r = -0,997).

ELumo ande are strongly negatively correlated (r = -1).
1 andGapare perfectly correlated (r = 1).
The following variables then removed #&ap, Amaxyando.

On the other hand, the correlation circle (Figurandicates the correlation between electronic dpgirs.

125
Available online at www.scholarsresearchlibrary.com



Majdouline Larif etal J. Comput. Methods Mal. Des., 2014, 4 (4):121-130
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Figure 4:Circle correlation between descriptors

Cartesian diagram

Projection on the plan 1x2

The Cartesian diagram analyses of projections dawprto the plane F1-F2 (60.57%) of the total vareof the
studied molecules.

The Cartesian diagram does not provide informationthe distribution of molecules because the mddecu
structure of chalcone derivatives used in this ystisdvery similar, which does not distinguish sfiecgroups of
molecules.

Multiple linear regressions (MLR)

In order to propose a mathematical model and ttuat@ quantitatively the substituent's physicocloaingffects on
the activityplso of the totality of the set of these 20 molecules,submitted the data matrix constituted obviously
from the 11 physicochemical variables correspondmghe 20 molecules, to a progressive multipleresgjon
analysis. This method used the coefficients &,aRd the F-values to select the best regressidarpence. Where

R is the correlation coefficient; R2 is the coaffitt of determinationMSE is the mean squared error; F is the Fisher
F-statistic. Treatment with multiple linear regiess is more accurate because it allows you to ecinthe
structural descriptors for each activity of 20 neolles to quantitatively evaluate the effect of sitsnt.

p|50 = 41,05 +1,04 16 Et + 1,02EHOM0 + 28,66E|_UMO + 0,15}1 + 15,66(1) - 5,01Ea' 0a06)\'max - 0,21
fiso(Equation 1)

N =20 R =0, 641 R=0,801 RMCE = 0,180
15 Préd(P150) / Résidus normalisés - Préd(PI50) / PI50
A 21 + e
g R 21 Vs
2 A 19 | -
0.5 AA A ’ A//
1< 8p A A A 1.8 + A o
e o A’ A
Qo : : A 217 1 AA» et
@ 13 & 17 19 21 16 | A pa
B05 1s 1 .
2 A " A&
e A A 1 o A A
A 137 7 A aa
A A T J T
15
Préd(PIS0) 12 13 14 15 G ddishp 19 2 21 22

Figure 5: Relationship between the estimated values plso, their predictions
and their residues established by MLR
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As a remark (Table 3), the model the values arferdifit from O at a significant level p <0.05 foxBy001 with
F(8,11) = 2,40. The figure 5 shows a very regulatrithution of toxicity values depending on the exmental
values [21].

Table 3: Analyses of variance

Sum of
Source DDL squares Mean square F Pr>F
Model 8 0,639 0,080 2,460 < 0,0001
Error 11 0,357 0,032 - -
Total corrected 19 0,996 - - -

Multiple non linearregression (MNLR)

We have used also the technique of nonlinear rsigmesnodel to improve the structure-activity redaship to
guantitatively evaluate the effect of substitudntakes into account several parameters. Thik@snhiost common
tool for the study of multidimensional data. We @aapplied to the data matrix constituted obviodstm the
descriptors proposed by MLR corresponding to thendlecules. The coefficients RZRand the F-values are used
to select the best regression performance.We upegtprogrammed function of XLSTAT following:

Y= a+(bX1l+cX2+dX3+eXa..)+ (f X12+ g X2 h X32+i X42...)

Where a, b, c, d,..: represent the parameters 4nXX X3, X4,...: represent the variables.
The resulting equation was:

plso=3772,01 + 1,71 IHEt + 47,20Ewomo - 227,77E umo + 7,03 10 - 96,600 -715,83E,~ 6,55 hpax 6,55
fso + 2,0310°Et* + 3,57 Epiomo -116,17E ymo > + 0,019p” + 27,55w° + 51,62E,° + 4,2710may’ + 7,52
fsoy(Equation 2)

N =20 R =0,901 R=0, 941 RMCE = 0,182
With MLNR was obtained significantly better corriada coefficient R = 0,912 (Figure 6) shows a venjform
distribution of the toxicity observed values depegdon the experimental values and the correlalietween the
experimental results and calculated alter thegg filhe residual values tended to zero which is wigydi not
graph for prediction residuals [21,32].

Préd(P150) / P150 Résidus
22 - 0.2
21T & 0.15
2 N's
19 | ‘/ 0.1
8 + P 005
2 A“ ]
?IJ + A‘/ .go 1
6 + b
. A o Fos | 6 7 8 910111213 151617181920
5+ .~
1.4 + /" -0.1 +
. A .7 A
13 + ‘z’A A -0.15 +
1.2 +5—i } } } } } } } } 02
12 13 14 15 16 1.7 1.8 1.9 2 21 22 A
Préd(P150) Observations

Figure 6: Relationship between the estimated valuesf plso and their
Predictions established by MNLR

Validation of model - Cross Validation

Artificial neural networks (ANN) are used to gerterapredictive models of quantitative structure atti
relationships (QSAR) between the 8 molecular dpsmis obtained from the MLR and observed activitieput).
The ANN calculated activities model were developesing the properties of several studied compouRds.
determination of the number of hidden neuronsD.r@eui and D. Villemin [33]have discussed the ulsefss ofp
parameter defined as:

p = Number of data points in the training set /Sdrthe number of connections in the ANN.

The range of 19<2.2 has been suggested as an empirical guiddiiaeceptable values. It has been claimed that
for p<<1.0 the ANN simply memorizes the data. Whiledor3.0, the ANN is not able to generalize[34,27].
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So we used a number of neurons in the hidden Eli@wing to maintairp in the 19<3 range, to avoid these two
problems. Two different architectures have beerdiegg8-2-1; 8-1-1). The two architectureswererteal with the
number of cycles limited to 500. The criterion ugedthe comparison of the two architectures is ¢bherelation
coefficient (R).

The architecture (8-2-1) gives better results ttan (8-1-1). The output layer represents the catedl activity
values IGycalculated using ANN (Table 5).The statistical nuzas obtained were:

N=20 R =0,949 R=0, 901 (Architecture 8-2-1)
We see that the ANN approach gives better reshéia the MLR and MNLR (table 4). This preliminarycy
allows concluding that the ANN was able to estdibéissatisfactory relationship between the electraeiscriptors

and the activity against HT-29 human colon adermgama cell lines.

Table 4 shows the comparison between the differethods of the correlation coefficient R.

Table 4: Statistical results of comparative all modls based on the N = 20 compounds
Statistical result

Statistical result MLR MNLR ANN

R? 0,641 0,901 0,949
MCE 0,032 0,099 -
RMSE 0,180 0,182 -

R? Determination coefficient; S: Standard error atienated; F: Fischer test value; RMSE: Root mearase|
error.

Before using a QSAR model to predict the activitynew compounds, we should validate it using adadion
method. In this work we validated our model ANNwitross validation using Leave one out LOO procedusing
MATLAB software).

The cross-validation analysis was performed with lfave-one-out (LOO) procedure in which one comploig
removed from the dataset and its activity is priediaising the model derived from the rest of thaskt.

The values of predicted activities calculated usBrgss Validation is given in Table 5.The statmtimeasures
obtained were:

N =20 RZ=0,611 R=0, 782
DISCUSSION

On the projection plane 1x2principal component gs&d informs us from the circle of correlation dgxors that
speak strongly correlated from figure 4.

The Cartesian diagram does not provide informationthe distribution of molecules because the mdéecu
structure of chalcone derivatives used in this ystisdvery similar, which does not distinguish sfiecgroups of
molecules.

The RNLM takes into account all the descriptorswiitgher compared with the linear regression RLM.

The cross-validated ‘Rvalue that resulted in optimum number of composéhiwas taken. The robustness of the
model was internally evaluated by calculating tfffRm the training set [35]. This study allows chuing that
our model was able to establish a satisfactorytiogiship between the electronic descriptors and abivity
studded, and we can used to the activity of newpmmds.

Table 5 shows the comparison of observed valudsthi calculated values of the MLR, MNLR, ANN and.C
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Table 5: Observed values and calculated of gjaccording to different methods.

RLM RNLM ANN CVv
Mol.  plso(Obs.) plso(pred.) Residu pko(pred.) Residu pko(pred.) Residu pko Resid
(Pred.) ~esidu
1 1,602 1,508 0,094 1,444 0,158 1,439 -0,899 1,577 ,029D
2 1,276 1,508 -0,232 1,444 -0,168 1,439 -0,899 1,6020,326
3 1,627 1,574 0,053 1,621 0,006 1,610 -1,031 1,439 ,188
4 1,469 1,493 -0,024 1,466 0,003 1,496 -1,441 1,483 ,0140
5 1,384 1,622 -0,238 1,514 -0,130 1,391 -0,725 1,3120,072
6 1,746 1,914 -0,168 1,758 -0,012 1,733 -1,312 1,7710,025
7 1,631 1,408 0,223 1,628 0,003 1,619 -0,931 1,620 ,0120
8 1,691 1,534 0,157 1,616 0,075 1,781 -1,136 1,616 ,07%0
9 1,775 1,640 0,135 1,797 -0,022 1,850 -1,178 1,6920,083
10 2,005 1,998 0,007 1,994 0,011 2,020 -1,408 2,112 107,
11 1,680 1,580 0,100 1,662 0,018 1,670 -1,203 1,648 ,0320
12 1,276 1,392 -0,116 1,283 -0,007 1,363 -0,983 1,5210,245
13 1,391 1,536 -0,145 1,271 0,120 1,339 -0,717 1,3620,029
14 1,269 1,479 -0,210 1,347 -0,078 1,224 -0,687 1,5670,298
15 2,116 2,053 0,063 2,095 0,021 2,013 -1,441 1,920 ,1960
16 1,726 1,677 0,049 1,735 -0,009 1,720 -1,379 1,7030,024
17 1,843 1,793 0,050 1,859 -0,016 1,764 -1,564 1,7210,122
18 1,641 1,595 0,046 1,635 0,006 1,647 -1,510 1,641 0000,
19 1,621 1,565 0,056 1,596 0,025 1,643 -1,354 1,648 0270,
20 1,632 1,529 0,103 1,639 -0,007 1,616 -1,214 1,5300,102
CONCLUSION

In this work, we studied the QSAR regression taljmtethe toxicity of a series of 20 compounds asr R different
models obtained using different statistical toahsl aarious descriptors was shown in table 5. Theysbf the
quality of ANN, MLR and MNLR models showed that tABIN result has substantially better predictive ataifity

than the other methods. With the ANN approach we testablished a relationship between 8 electrdescriptors
and toxicity in satisfactory manners, and the tesumodels were validated with success by leaveemeross-
validation procedure to check their predictabidityd robustness.

This study allows concluding that our model waseabl establish a satisfactory relationship betwtberelectronic
descriptors and the activity against HT-29 humdnrcadenocarcinoma cell lines, and we can uselde@dtivity of
new compounds.

Finally, we can conclude that one of the studiesicdptors, which is sufficiently rich in chemicaha electronic
information to encode the structural features, imayised with other topological descriptors for deeelopment of
predictive QSAR models.
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