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ABSTRACT 
 
Chalcones are 1,3-diphenyl-2-propene-1-one, in which two aromatic rings are linked by a three carbon α,β-
unsaturated carbonyl system. These are abundant in edible plants and are considered to be precursors of flavonoids 
and isoflavonoids. Our objective is to study the relationship between the activities and structure, a 3D-QSAR study 
is applied to a set of 20 molecules for biological activity prediction derivatives. This study was conducted using the 
principal component analysis PCA method; the multiple linear regression method MLR and the artificial neural 
network ANN;The leave-one out cross-validation procedure was used to validate the ANN model for use it to predict 
the activity of others new compounds. The relevant descriptors obtained from the ANN showed a correlation 
coefficient of 0.949 models which is a good result. As a result of quantitative structure–activity relationships, we 
found that the model proposed in this study is constituted of major descriptors used to describe these molecules. The 
obtained results suggested that the proposed combination of several calculated parameters could be useful to 
predict the biological activity of derivatives of 1,3-diphenyl-2-propene-1-one. 
 
Keywords: Biological activity; 3D-QSAR; PCA; MLR; ANN; DFT study. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 
Chalcones are 1,3-diphenyl-2-propene-1-one, in which two aromatic rings are linked by a three carbon α, β-
unsaturated carbonyl system as,They exhibit diver’s biological activities, such as antimicrobial, anticancer, 
antiprotozoal, antiulcer, anti-inflammatory, among others[1], and thus comprise a class with important therapeutic 
potential. Benzodiazepines derivatives have long been known for their wide range of therapeutic and 
pharmacological properties. Nowadays, many members of diazepine family are widely used as anticonvulsant, 
analgesic, sedative, antidepressive, and hypnotic agents[2]. Benzodiazepine derivatives also find commercial use as 
dyes for acrylic fibers [3] and [4] and some 2,4-diaryl-7,8-dimethyl-2,3-dihydro-1H-1,5-benzodiazepines have been 
tested against breast cancer and have shown moderate activity[5]. 
Cancer is a major public health problem and leading cause of death in many parts of the world. Deaths from cancer 
worldwide are projected to continue rising, with an estimated 13.1 million deaths in 2030 [6]. 
 
Quantitative structure-activity relationship (QSAR), as an important area of chemometrics, has been the subject of a 
series of investigations [7].  



Majdouline Larif  et al                             J. Comput. Methods Mol. Des., 2014, 4 (4):121-130  
______________________________________________________________________________ 

122 
Available online at www.scholarsresearchlibrary.com 

The main aim of QSAR studies is to establish an empirical rule or function relating the structural descriptors of 
compounds under investigation to bioactivities. This rule or function is then utilized to predict the same bioactivities 
of the compounds not involved in the training set from their structural descriptors. Whether the bioactivities can be 
predicted with satisfactory accuracy depends to a great extent on the performance of the applied multivariate data 
analysis method, provided the property being predicted is related to the descriptors. Many multivariate data analysis 
methods such as principal components analysis (PCA) and artificial neural network (ANN) have been used in QSAR 
studies. ANN offers satisfactory accuracy in most cases but tends to over fit the training data. There are a large 
number of molecular descriptors that can be used in QSAR studies. Once validated, the findings can be used to 
predict activities of untested compounds. Recently, computer-assisted drug design based on QSAR has been 
successfully employed to develop new drugs for the treatment of cancer and other diseases [8].  
 
After a QSAR model is built and validated, it can predict the biological activity of novel molecules room their 
structural properties. A QSAR model can also screen potentially active molecules from a database, as described in 
the section on applications of the technique. Because the QSAR model can incorporate a wide range of different 
variables, be it physical, chemical or biological, it can also be utilized in industries apart from drug design [9], such 
as toxicology [10], food chemistry [11] and other fields. 
 
Within the currently ongoing search for effective anticancer drugs candidates in the present study we have carried 
out and established a reliable quantitative structure–activity relationship (QSAR) analysis based on 20 chalcones 
derivatives. 
 

MATERIALS AND METHODS 
 

Experimental data 
In our QSAR study, a total of 20chalcones molecules were gathered from the literature [12,13], The log IC50 value, 
concentration of the compound (µM) exhibiting 50% inhibition of cell growth [14], for human colorectal cancer cell 
line, HT-29, was employed as the dependent variable (Table 1). 
 
All the compoundswere evaluated for their cytotoxic activity by the 3-(4,5 dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay based on mitochondrial reduction of yellow MTT tetrazolium dye to a 
highly colored blue formazan product [15].The following figure 1 represents the basic structure chalcones. 
 

 
 

Figure 1:Basic structure ofchalcones 
 

Table 1: selected training set of chalcone derivatives and their respective pI50 
 

Compound R R1 R2 R3 R4 R5 R6 pI50 
1 H H NH2 H Cl H Cl 1,602 
2 H H OCH3 H Cl H Cl 1,276 
3 OH H H H Cl H Cl 1,627 
4 H H NH2 H Cl H H 1,469 
5 H H H H H H OCH3 1,384 
6 H H NH2 H H H OCH3 1,746 
7 H NH2 H H H H OCH3 1,631 
8 H H OCH3 H H H OCH3 1,691 
9 H H H H H H OCH3 1,775 
10 H H H F H H OCH3 2,005 
11 H H NH2 H F H H 1,68 
12 H H OCH3 H F H H 1,276 
13 H H H H H H OH 1,391 
14 H H OCH3 H H H OH 1,269 
15 H H H H OCH3 H OCH3 2,116 
16 H H F F H OCH3 H 1,726 
17 H H NH2 H OCH3 OCH3 H 1,843 
18 H NH2 H H OCH3 OCH3 H 1,641 
19 H H OCH3 H OCH3 OCH3 H 1,621 
20 H H H H CF3 H H 1,632 
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Computational methods 
DFT (density functional theory) methods were used in this study. These methods have become very popular in 
recent years because they can reach similar precision to other methods in less time and less cost from the 
computational point of view. In agreement with the DFT results, energy of the fundamental state of a polyelectronic 
system can be expressed through the total electronic density, and in fact, the use of electronic density instead of 
wave function for calculating the energy constitutes the fundamental base of DFT [16-19], using the B3LYP 
functional [19,20] and a 6-31G* basis set. The B3LYP, a version of DFT method, uses Becke’s three-parameter 
functional (B3) and includes a mixture of HF with DFT exchange terms associated with the gradient corrected 
correlation functional of Lee, Yang and Parr (LYP). The geometry of all species under investigation was determined 
by optimizing all geometrical variables without any symmetry constraints. 
 
Calculation of molecular descriptors 
Calculation of molecular descriptors using Gaussian 03W 
From the results of the DFT calculations, the quantum chemical descriptors were obtained for the model building as 
follows: the total energy (Et (u.a.)), the highest occupied molecular orbital energy (EHOMO  (eV)), the lowest 
unoccupied molecular orbital energy (ELUMO  (eV)), the energy difference between the LUMO and the HOMO 
energy (Gap (eV)), absorption maximum λmax, the total dipole moment of the molecule (µ (Debye)), absolute 
hardness η), absolute electron negativity (χ) and reactivity index (ω) [21]. (η),(χ) and (ω) were determined by the 
following equations: 
 

      ;             ;       
 
Principal components analysis  
Twenty molecules were studied by statistical methods based on the principal component analysis (PCA) [22,23] 
using the software XLSTAT 2009. 
 
Essentially a descriptive statistical method which aims to present, in graphic form, the maximum of information 
contained in the data (Table 1). 
 
PCA is a statistical technique useful for summarizing all the information encoded in the structures of compounds. It 
is also very helpful for understanding the distribution of the compounds. 
 
 
Multiple linear and nonlinear regressions (MLR and MNLR) 
The multiple linear and nonlinear regression statistics techniques are used to study therelation between one 
dependent variable and several independent variables. The multiple linear and non linear regression models (MLR 
and MNLR) are generated using the software XLSTAT, version 2009, to predict pIC50.  
 
The optimal number of components (N) is employed to do validation MLR and MNLR analysis to get the final 
model parameters such as correlation coefficient R2, standard deviation (S) and Fischer test value (F) [24]. 
 
Artificial neural networks (ANN) 
The ANN analysis was performed with the use of Matlab software version 7.0 using a program written in C 
language Neural toolbox on a data set of structures of 20 chalcones derivatives [25,26]. A number of individual 
models of ANN were designed built up and trained. Generally the network was built for three layers; one input 
layer, one hidden layer and one output layer were considered [27]. The input layer was consisted of eight artificial 
neurons of linear activation function (Figure 2). The number of artificial neural in the hidden layer was adjusted 
experimentally. The hidden layer consisted of 20 artificial neural. One neuron formed the output layer of sigmoid 
function activation. The architecture of the applied ANN models is presented in (Figure 3). 
 

 
 

Figure 2: Neuron Layout of ANN 
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Figure 3: The ANN architecture. 
 
The data subjected to ANN analysis were randomly divided into three sets: a learning set, a validation set and a 
testing set. Prior to that, the whole data set was scaled within the 0-1 range.  
 
The set of structures of 20 chalcones derivatives [28] was subjected to the ANN analysis. First, for the learning set 
of compounds, i.e., selected training set of 20 chalcone derivatives. The learning set of data is used in ANN to 
recognize the relationship between the input and output data. Then for the revision of the ANN model designed and 
selected, the validation set of 20 compounds was used. Testing set with eight compounds was provided to be an 
independent evaluation of the ANN model performance for the finally applied network. In this study, we selected 
the sigmoid as a basis function [29]. 
 
The operation of the output layer is linear, which is given as below: 
 

 
 

Where yk is the kth output layer unit for the input vector X, wkj is the weight connection between the kth output unit 
and the jth hidden layer unit and bk is the bias that allows a transfer function “non-zero” given by the following 
equation:  

 
 

Where y is the measured value andȳis the value predicted by the model. 
 
The accuracy of the model was mainly evaluated by the root mean square error (RMSE). Formula is given as 
follows: 

 
 

Where n = number of compounds, pexp = experimental value, ppred = predicted value and summation is of overall 
patterns in the analyzed data set [30,31]. The scripts were run on a personal PC. 
 

RESULTS 
 
Data for analysis 
A QSAR study was carried for a series of 20 chalcone derivatives, in order to determine a quantitative relationship 
between structure and toxicity. 
 
Table 2 shows the values of the calculated parameters obtained by DFT/B3LYP 6-31G* optimization of the studied 
Selected training set of 20 chalcones derivatives. 
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Table 2: Values of the twelve chemical descriptors 
 

Molec. pI 50 Et EHOMO  EHUMO  Gap  µ χ η ω Ea λmax f (SO) 
1 1,602 -44346 -5,806 -1,978 3,8280 3,8349 3,8917 1,9140 3,9565 4,2510 291,66 0,5404 
2 1,276 -45422 -3,924 0,087 4,0107 2,3570 1,9182 2,0054 0,9174 3,7181 333,46 0,0606 
3 1,627 -44887 -6,332 -2,185 4,1469 3,3212 4,2589 2,0734 4,374 4,0957 302,72 0,5792 
4 1,469 -33879 -5,626 -1,763 3,8626 4,6616 3,6947 1,9313 3,5341 3,4537 358,99 0,0553 
5 1,384 -20928 -5,856 -1,785 4,0709 4,2239 3,8206 2,0354 3,5858 3,8474 322,25 0,6661 
6 1,746 -22435 -5,612 -1,527 4,0848 3,8558 3,5697 2,0424 3,1196 4,026 307,96 0,4213 
7 1,631 -22435 -5,560 -1,678 3,8825 2,5075 3,6191 1,9412 3,3737 3,8781 319,71 0,6879 
8 1,691 -24046 -5,770 -1,646 4,1240 2,9293 3,7078 2,0620 3,3336 3,7892 327,20 0,6445 
9 1,775 -22976 -5,802 -1,657 4,1450 3,8229 3,7300 2,0725 3,3565 4,0080 309,34 0,6724 
10 2,005 -26332 -6,009 -2,041 3,9680 5,2198 4,0251 1,9840 4,0831 3,7441 331,14 0,6124 
11 1,680 -22019 -5,709 -1,716 3,9933 5,2873 3,7127 1,9966 3,4518 4,3396 285,70 0,4666 
12 1,276 -23630 -6,109 -1,840 4,2697 4,3550 3,9745 2,1348 3,6997 4,3234 286,78 0,3799 
13 1,391 -19858 -5,939 -1,816 4,1234 3,6236 3,8777 2,0617 3,6466 3,9149 316,70 0,6220 
14 1,269 -22976 -5,849 -1,674 4,1749 2,445 3,7618 2,0875 3,3896 3,8213 324,46 0,5374 
15 2,116 -24046 -5,595 -1,545 4,0502 5,4096 3,5704 2,0251 3,1474 3,7831 327,73 0,5717 
16 1,726 -26332 -6,202 -2,135 4,0676 2,4557 4,1686 2,0338 4,2722 4,1078 301,82 0,3407 
17 1,843 -25553 -5,651 -1,589 4,0619 4,1110 3,6198 2,0309 3,2259 3,6408 340,54 0,1999 
18 1,641 -25553 -5,583 -1,750 3,8329 3,5899 3,6668 1,9164 3,5079 4,0830 303,66 0,1365 
19 1,621 -27164 -6,037 -1,707 4,3301 2,8592 3,8724 2,1651 3,4630 3,8771 319,79 0,2886 
20 1,632 -26987 -6,574 -2,086 4,4875 5,6475 4,3298 2,2438 4,1777 4,2796 289,71 0,4016 

 
Correlation matrix 
Table 2 shows the correlation matrix (Pearson (n)) therefor obtained between different descriptors. 
 

Table 2: Correlation matrix (Pearson (n)) between different obtained descriptors 
 

Et EHOMO  ELUMO Gap µ χ η ω Ea λmax f(SO) pI50 
Et 1 
EHOMO  0,206 1 
ELUMO 0,576 0,768 1 
Gap 0,331 -0,688 -0,064 1 
µ 0,031 -0,074 -0,043 0,066 1 
χ -0,384 -0,958 -0,919 0,451 0,065 1 
η 0,331 -0,688 -0,064 1,000 0,066 0,451 1 
ω -0,575 -0,781 -1,000 0,084 0,040 0,927 0,084 1 
Ea -0,235 -0,408 -0,426 0,153 0,091 0,441 0,153 0,427 1 
λmax 0,213 0,408 0,416 -0,165 -0,055 -0,437 -0,165 -0,418 -0,997 1 
f (SO) 0,080 -0,070 -0,053 0,049 -0,101 0,067 0,049 0,057 0,144 -0,183 1 
pI 50 0,159 0,153 0,165 -0,051 0,323 -0,168 -0,051 -0,156 -0,248 0,233 0,034 1 

Bold values are different from 0 at a level significant for p < 0.05 
At a very significant for p < 0,01; At a highly significant to p < 0,001 

 
Correlation circle 
Principal component analysis (PCA) was also performed to detect the connection between the different variables. 
The principal component analysis revealed from the correlation circle (Figure 4) shows that the F1 axis (40.46%) 
presents the energy of the variance while the axis F2 (20.11%) of the variance is located by the other parameters of 
energy [21]. 
 
χ and EHOMO  are perfectly correlated (r = 0,958), both variables are redundant. 
λmax and Εa are strongly negatively correlated (r = -0,997). 
 
ELUMO  and ω are strongly negatively correlated (r = -1). 
 
η and Gapare perfectly correlated (r = 1). 
 
The following variables then removed are:Gap, λmax,χand ω. 
 
On the other hand, the correlation circle (Figure 4) indicates the correlation between electronic descriptors. 
 



Majdouline Larif  et al                             J. Comput. Methods Mol. Des., 2014, 4 (4):121-130  
______________________________________________________________________________ 

126 
Available online at www.scholarsresearchlibrary.com 

 
 

Figure 4:Circle correlation between descriptors 
 
Cartesian diagram 
Projection on the plan 1×2 
The Cartesian diagram analyses of projections according to the plane F1–F2 (60.57%) of the total variance of the 
studied molecules.  
 
The Cartesian diagram does not provide information on the distribution of molecules because the molecular 
structure of chalcone derivatives used in this study is very similar, which does not distinguish specific groups of 
molecules. 
Multiple linear regressions (MLR)  
In order to propose a mathematical model and to evaluate quantitatively the substituent's physicochemical effects on 
the activity pI50 of the totality of the set of these 20 molecules, we submitted the data matrix constituted obviously 
from the 11 physicochemical variables corresponding to the 20 molecules, to a progressive multiple regression 
analysis. This method used the coefficients R, R2, and the F-values to select the best regression performance. Where 
R is the correlation coefficient; R² is the coefficient of determination; MSE is the mean squared error; F is the Fisher 
F-statistic. Treatment with multiple linear regressions is more accurate because it allows you to connect the 
structural descriptors for each activity of 20 molecules to quantitatively evaluate the effect of substituent.  
 
pI50 =  41,05 +1,04 10-5 Et + 1,02 EHOMO + 28,66 ELUMO + 0,15 µ + 15,66 ω - 5,01 Ea- 0,06 λmax - 0,21 
f(SO)(Equation 1) 
 

N = 20       R2 = 0, 641            R=0,801          RMCE = 0,180 
 

 
 
 

Figure 5: Relationship between the estimated values of pI50, their predictions  
and their residues established by MLR 
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As a remark (Table 3), the model the values are different from 0 at a significant level p <0.05 for Pr<0,001 with 
F(8,11) = 2,40. The figure 5 shows a very regular distribution of toxicity values depending on the experimental 
values [21]. 
 

Table 3: Analyses of variance 
 

 
Source DDL 

 Sum of 
squares  

 
 

Mean square F Pr > F 
Model 8 0,639 0,080 2,460 < 0,0001 
Error 11 0,357 0,032 - - 
Total corrected 19 0,996 - - - 

 
Multiple non linearregression (MNLR)  
We have used also the technique of nonlinear regression model to improve the structure-activity relationship to 
quantitatively evaluate the effect of substituent. It takes into account several parameters. This is the most common 
tool for the study of multidimensional data. We have applied to the data matrix constituted obviously from the 
descriptors proposed by MLR corresponding to the 20 molecules. The coefficients R, R2, and the F-values are used 
to select the best regression performance.We used a pre-programmed function of XLSTAT following: 
 

Y =  a + (b X1+ c X2 + d X3+ e X4 …) + (f X12+ g X22+ h X32+ i X42…) 
 
Where a, b, c, d,..: represent the parameters and X1, X2, X3, X4,...: represent the variables. 
The resulting equation was: 
 
pI50 = 3772,01 + 1,71 10-4 Et + 47,20 EHOMO - 227,77 ELUMO + 7,03 10-3µ - 96,60 ω -715,83 Ea- 6,55 λmax- 6,55 
f(SO) + 2,0310-9.Et2 + 3,57 EHOMO

2-116,17 ELUMO
2 + 0,019 µ2 + 27,55 ω2 + 51,62 Ea

2  + 4,2710-3λmax
2 + 7,52 

f(SO)
2(Equation 2) 

 
N = 20       R2 = 0,901             R=0, 941         RMCE = 0,182 

With MLNR was obtained significantly better correlation coefficient R = 0,912 (Figure 6) shows a very uniform 
distribution of the toxicity observed values depending on the experimental values and the correlation between the 
experimental results and calculated alter them pI50. The residual values tended to zero which is why we did not 
graph for prediction residuals [21,32]. 
 

 
 

Figure 6: Relationship between the estimated values of pI50 and their 
Predictions established by MNLR 

 
Validation of model - Cross Validation 
Artificial neural networks (ANN) are used to generate predictive models of quantitative structure-activity 
relationships (QSAR) between the 8 molecular descriptors obtained from the MLR and observed activities (input). 
The ANN calculated activities model were developed using the properties of several studied compounds. For 
determination of the number of hidden neuronsD. Cherqaoui and D. Villemin [33]have discussed the usefulness of ρ 
parameter defined as: 
 
ρ = Number of data points in the training set /Sum of the number of connections in the ANN. 
 
The range of 1< ρ<2.2 has been suggested as an empirical guideline of acceptable ρ values. It has been claimed that 
for ρ<<1.0 the ANN simply memorizes the data. While for ρ>>3.0, the ANN is not able to generalize[34,27]. 
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So we used a number of neurons in the hidden layer allowing to maintain ρ in the 1<ρ<3 range, to avoid these two 
problems. Two different architectures have been applied (8-2-1; 8-1-1). The two architectureswere trained with the 
number of cycles limited to 500. The criterion used for the comparison of the two architectures is the correlation 
coefficient (R). 
 
The architecture (8-2-1) gives better results than the (8-1-1). The output layer represents the calculated activity 
values IC50 calculated using ANN (Table 5).The statistical measures obtained were: 
 

N=20  R2 = 0,949          R=0, 901   (Architecture 8-2-1) 
 
We see that the ANN approach gives better results than the MLR and MNLR (table 4). This preliminary study 
allows concluding that the ANN was able to establish a satisfactory relationship between the electronic descriptors 
and the activity against HT-29 human colon adenocarcinoma cell lines. 
 
Table 4 shows the comparison between the different methods of the correlation coefficient R. 

 
Table 4: Statistical results of comparative all models based on the N = 20 compounds 

Statistical result 
 

Statistical result MLR MNLR ANN 
R2 0,641 0,901 0,949 
MCE 0,032 0,099 - 
RMSE 0,180 0,182 - 

 
R2: Determination coefficient; S: Standard error of estimated; F: Fischer test value; RMSE: Root mean square 
error. 
 
Before using a QSAR model to predict the activity of new compounds, we should validate it using a validation 
method. In this work we validated our model ANN with cross validation using Leave one out LOO procedure (using 
MATLAB software).  
 
The cross-validation analysis was performed with the leave-one-out (LOO) procedure in which one compound is 
removed from the dataset and its activity is predicted using the model derived from the rest of the dataset. 
 
The values of predicted activities calculated using Cross Validation is given in Table 5.The statistical measures 
obtained were: 
 

N = 20       Rcv
2 = 0,611             Rcv=0, 782 

 
DISCUSSION 

 
On the projection plane 1x2principal component analyses informs us from the circle of correlation descriptors that 
speak strongly correlated from figure 4. 
 
The Cartesian diagram does not provide information on the distribution of molecules because the molecular 
structure of chalcone derivatives used in this study is very similar, which does not distinguish specific groups of 
molecules. 
 
The RNLM takes into account all the descriptors with higher compared with the linear regression RLM. 
 
The cross-validated R2 value that resulted in optimum number of components N was taken. The robustness of the 
model was internally evaluated by calculating the R2 from the training set [35]. This study allows concluding that 
our model was able to establish a satisfactory relationship between the electronic descriptors and the activity 
studded, and we can used to the activity of new compounds. 
 
Table 5 shows the comparison of observed values with the calculated values of the MLR, MNLR, ANN and CV. 
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Table 5: Observed values and calculated of pI50 according to different methods. 
 

  RLM RNLM ANN CV 
Mol. pI 50 (Obs.) pI50 (pred.) Residu pI50 (pred.) Residu pI50 (pred.) Residu pI50 

(Pred.) Residu 

1 1,602 1,508 0,094 1,444 0,158 1,439 -0,899 1,577 -0,025 
2 1,276 1,508 -0,232 1,444 -0,168 1,439 -0,899 1,602 0,326 
3 1,627 1,574 0,053 1,621 0,006 1,610 -1,031 1,439 -0,188 
4 1,469 1,493 -0,024 1,466 0,003 1,496 -1,441 1,483 0,014 
5 1,384 1,622 -0,238 1,514 -0,130 1,391 -0,725 1,312 -0,072 
6 1,746 1,914 -0,168 1,758 -0,012 1,733 -1,312 1,771 0,025 
7 1,631 1,408 0,223 1,628 0,003 1,619 -0,931 1,620 -0,012 
8 1,691 1,534 0,157 1,616 0,075 1,781 -1,136 1,616 -0,075 
9 1,775 1,640 0,135 1,797 -0,022 1,850 -1,178 1,692 -0,083 
10 2,005 1,998 0,007 1,994 0,011 2,020 -1,408 2,112 0,107 
11 1,680 1,580 0,100 1,662 0,018 1,670 -1,203 1,648 -0,032 
12 1,276 1,392 -0,116 1,283 -0,007 1,363 -0,983 1,521 0,245 
13 1,391 1,536 -0,145 1,271 0,120 1,339 -0,717 1,362 -0,029 
14 1,269 1,479 -0,210 1,347 -0,078 1,224 -0,687 1,567 0,298 
15 2,116 2,053 0,063 2,095 0,021 2,013 -1,441 1,920 -0,196 
16 1,726 1,677 0,049 1,735 -0,009 1,720 -1,379 1,703 -0,024 
17 1,843 1,793 0,050 1,859 -0,016 1,764 -1,564 1,721 -0,122 
18 1,641 1,595 0,046 1,635 0,006 1,647 -1,510 1,641 0,000 
19 1,621 1,565 0,056 1,596 0,025 1,643 -1,354 1,648 0,027 
20 1,632 1,529 0,103 1,639 -0,007 1,616 -1,214 1,530 -0,102 

 
CONCLUSION 

 
In this work, we studied the QSAR regression to predict the toxicity of a series of 20 compounds as R or R2 different 
models obtained using different statistical tools and various descriptors was shown in table 5. The study of the 
quality of ANN, MLR and MNLR models showed that the ANN result has substantially better predictive capability 
than the other methods. With the ANN approach we have established a relationship between 8 electronic descriptors 
and toxicity in satisfactory manners, and the resulted models were validated with success by leave-one out cross-
validation procedure to check their predictability and robustness. 
 
This study allows concluding that our model was able to establish a satisfactory relationship between the electronic 
descriptors and the activity against HT-29 human colon adenocarcinoma cell lines, and we can used to the activity of 
new compounds. 
 
Finally, we can conclude that one of the studied descriptors, which is sufficiently rich in chemical and electronic 
information to encode the structural features, may be used with other topological descriptors for the development of 
predictive QSAR models. 
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