

Scholars Research Library

Der Pharmacia Lettre, 2013, 5 (6):88-98 (http://scholarsresearchlibrary.com/archive.html)



# Prediction of anti-inflammatory activity of anthranylic acids using Structural Molecular Fragment and topochemical models

Cyrille Menye<sup>1\*</sup>, Claude M. Ngabireng<sup>2</sup>, Simeon F. Kouam<sup>3</sup>

<sup>1\*</sup>Faculty of sciences/Department of Physics, University of Yaounde I, Yaounde, P.O.Box 812, Cameroon <sup>2</sup>National Advanced School of Engineering/Department of Mathematics and Physical Science University of Yaounde I, Yaounde, P.O.Box 8390, Cameroon <sup>3</sup>Higher Teachers' Training College/Department of Chemistry, University of Yaounde I Yaounde, P.O.Box 47, Cameroon

# ABSTRACT

The method of Substructural Molecular Fragments based on the representation of the molecular graph by ensembles of fragments and involving calculations of those contributions to a given property. We also use the relationship between the topochemical indices, Wiener's index : defined as the sum of all distance between unordered pairs of vertices, Zagreb group parameter M1 and M2: defined as the summation of the squares of chemical degrees over all the vertices an adjacency and eccentric connectivity index : defined as the summation of the product of chemical eccentricity and the chemical degree of each vertex with anthranylic acids has been investigated. A data set comprising of 100 analogues of anthranylic acids was selected for the present study. The values of the Wiener's index, Zagreb group parameter, and eccentric connectivity index were computed for each of the 100 analogues using an in-house computer program and suitable models were developed after identification of the active ranges. For the first model, the predicted values for the biological activity of the structures in the prediction set are pertinent: the plot of  $A_{cal}$  vs.  $A_{obs}$  showed a correlation  $R^2 = 0.9175$ . Subsequently for the second model, each compound was assigned a biological activity using these models, which was then compared with the reported antiflammatory activity. Accuracy of prediction was found to be,  $\approx 86\%$  using models based upon topochemical descriptors.

Keywords: Substructural Molecular Fragments, anthranylic acids, topochemical descriptors, ISIDA/QSPR

# INTRODUCTION

Anthranilic acids belong to the category of non-steroidal anti-inflammatory drugs [1, 2]. They are amino isosteres of salicylates and are also known as fenamates. Important molecules of this class include mefenamic acid, flufenamic acid and meclofenamic acid. As an analgesic agent, mefenamic acid has been used to relieve pain arising from rheumatic conditions, soft tissue injuries, other painful musculoskeletal conditions and dysmenorrhea. Fenamates act by blocking the metabolism of arachidonic acid by the enzyme cyclooxygenase (COX), one of the key enzymes in the arachidonic acid cascade [3]. This enzyme, also known as prostaglandin H Synthase (PGH synthase /PGHS/PHS) is a prominent and well-studied protein which catalyzes the conversion of arachidonic acid to prostaglandin H<sub>2</sub> (PGH<sub>2</sub>), the committed step in prostaglandin (PG) biosynthesis. There are two isoforms of this enzyme: cyclooxygenase 1 (COX1) and cyclooxygenase 2 (COX2). COX1 are responsible for the maintenance and the protection of the gastrointestinal tract, COX2 is responsible for inflammation and pain [4]. The existing non-steroidal and anti-inflammatory drugs (NSAIDs) differ in their relative specificities for COX-1 and COX-2; while aspirin is equipotent at inhibiting COX-2 and COX-1 enzymes in vitro [5]. The finding of the structure of a molecule had an important role to play in its biological activity coupled with the need for safer potent drugs to be

developed with minimum expenditure, animal sacrifice and time loss led to the quantity of structure-activity relationship (QSAR) studies.

Molecular structure is the central theme of chemistry. According to the principle of molecular structure, properties, and behavior of molecules follow from their structures. If one considers nonmetric properties of a molecule, then the molecule can be represented by a (fragment) graph, which is essentially a nonnumeric mathematical object. Measurable properties of a molecule are usually expressed by means of numbers. Hence, to correlate property or activity of a molecule with its topology, one must first convert by an algorithm the information contained in the graph to a numerical characteristic and then one can establish relationships between structure of chemical compounds and their properties. [6]

In the present study, relationship of structural molecular fragment, Wiener's topochemical index, eccentric connectivity topochemical index and Zagreb's topochemical index with Anthranilic acids has been investigated.

#### MATERIALS AND METHODS

#### Substructural Molecular Fragments model

Substructural Molecular Fragments (SMF) is the method developed in ISIDA/QSPR [7]; the latest is based on the splitting of a molecular graph on fragments (subgraphs), and on the calculation of their contributions to a given property Y. Two classes of fragments are used: "sequences" (I) and "augmented atoms" (II). Three sub-types AB, A and B are defined for each class. For the fragments I, they represent sequences of atoms and bonds (AB), of atoms only (A), or of bonds only (B). Shortest or all paths from one atom to the other are used. For each type of sequences, the minimal  $(n_{min})$  and maximal  $(n_{max})$  number of constituted atoms must be defined. Thus, for the partitioning I(AB,  $n_{min}$  -  $n_{max}$ ), I(A,  $n_{min}$  -  $n_{max}$ ) and I(B,  $n_{min}$  -  $n_{max}$ ), the program generates "intermediate" sequences involving n atoms  $(n_{min} \le n \le n_{max})$ . In the current version of ISIDA/QSPR,  $n_{min} \ge 2$  and  $n_{max} \le 15$ . The number of sequences' types of different length corresponding to  $n_{min} = 2$  and  $n_{max} = 15$  is equal to 105 for each of three subtypes AB, A and B, totally 315 types of sequences. QSPR modeling was performed using Multiple Linear Regression Analysis (MLR) of the ISIDA/QSPR program[8] with combined forward and backward stepwise variable selection techniques.[9] MLR is applied to build linear relationships between independent variables (SMF descriptors: N<sub>i</sub> i =1, 2,...) and a dependent variable (here target property Y = A):  $Y = a0 + \Sigma aiNi$  (1), where every descriptor value is associated with observed property value (Y), a<sub>i</sub> is descriptor contribution, and a0 is the independent term which is omitted in a part of models. The Singular Value Decomposition method is used to fit contributions a<sub>i</sub> and to minimize the sum of squared residuals which are squared differences between the property values calculated by the model  $(y_{calc})$  and observed values  $(y_{exp})$  in the training set. The program can generate more than 25,000 MLR models; each of them corresponds to particular type of the SMF descriptors and MLR equation (a0= 0 or  $a0\neq0$ ) and applied variable selection technique. In order to validate consensus model, the external 5-fold cross validation (5-CV) was applied. [11,12] ISIDA, implicitly keeps every  $5^{\text{th}}$  compound in the test set, the initial set was randomly split into 5 subsets, each of which was iteratively ignored at the training stage, in order to serve as internal validation set while the four others formed, together, the learning set. For each of these 5 splitting schemes, models were built followed by prediction calculations on the corresponding validation set. Finally, all values calculated for five test sets are merged into one file to analyze overall linear correlations between experimental and predicted property. One can use Determination Coefficient (R<sup>2</sup>), Root Mean Squared Error (RMSE) or Mean Average Error (MAE), to estimate the quality of the linear correlation between predicted (Y<sub>pred</sub>) and experimental  $(Y_{exp})$  data for n compounds. Formulas for the statistical parameters are formulated below.

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{pred,i} - y_{exp,i})^{2}}{\sum_{i=1}^{n} (y_{exp,i} - \bar{y}_{exp})^{2}}$$
(2)

Root -mean square error

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=n}^{n} (y_{pred,i} - y_{exp,i})^{2}}$$
(3)

Mean average error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \left| y_{pred,i} - y_{exp,i} \right|$$
(4)

ISIDA calculates a Consensus Model (CM) combining the information issued from several models. At the first step, hundreds of models are built using different initial pools of descriptors corresponding to different fragmentation

types. Then predictive performance ( $R^2LOO$ ) is estimated using Leave One Out (LOO) procedure and the best models ( $R^2LOO$ >0.7) are combined into a consensus model. In the "leave one out" method, each compound is predicted in turn, based on a model learned from all other compounds. Predicted values are compared to experimental value, to compute leave one out cross-validation determination coefficient. For each compound from the test set, the program computes the property as an arithmetic mean of values obtained with these best models; those leading to outlying values were excluded according to Grubbs's statistics [13]. Generally, some 30 individual MLR models were used in consensus calculations.

#### **Topochemical models**

In general, a topological index, sometimes also known as a graph-theoretic index, is a numerical invariant of a graph. There are several topological indices having been defined such as Wiener index, Zagreb index. Recently, a lot of results on the eccentric connectivity index have been obtained and some of them have been applied as means for modeling chemical, pharmaceutical and other properties of molecules, [14, 15, 16].

Throughout this paper, all graphs we considered are simple and connected. Let G = (V (G), E(G)) be a simple connected graph with n vertices and m edges. For a vertex  $v \in V (G)$ ,  $d_G (v)$  (or just d (v) briefly) denotes the degree of  $v \cdot \delta (G)$ ,  $\Delta(G)$  represent the minimum and maximum degree of G, respectively. For vertices  $u, v \in V (G)$ , the distance d (u, v) is defined as the length of the shortest path between u and v in G. The eccentricity  $\varepsilon (v)$  of a vertex v is the maximum distance from v to any other vertex.

Wiener's topochemical index (Wc): It is a topochemical version of oldest and most widely used distance based topological index – Wiener's index[17] and this modified index takes into consideration the presence as well as relative position of heteroatom in a hydrogen suppressed molecular structure. Wiener's topochemical index is defined as the sum of the chemical distances between all the pairs of vertices in hydrogen suppressed molecular graph. [18]

$$W(G) = \sum_{\{u,v\}\in V(G)} d(u,v) = \frac{1}{2} \sum_{v \in V(G)} D(G)$$
(5)

The first and second Zagreb indices were first introduced by Gutman and Trinajstic [19]. It is reported that these indices are useful in the study of anti-inflammatory activities of certain chemical instances.

$$M_1(G) = \sum_{u \in V(G)} d(u)^2$$

$$M_2 = \sum_{uv \in E(G)} d(u)d(v)$$
(7)

Eccentric connectivity topochemical index ( $\xi^c(G)$ ) is defined as the summation of the product of chemical eccentricity and the chemical degree of each vertex in the hydrogen suppressed molecular graph having n vertices [26], that is

$$\xi^{\mathcal{C}}(G) = \sum_{v \in V(G)} e(v)d(v) \tag{8}$$

#### **RESULTS AND DISCUSSION**

#### Substructural Molecular Fragments model

A dataset comprising of 100 anthranilic acids (Figure 1) was selected. [20] Structural Molecular Fragment developped in ISIDA/QSPR. The modeled physical or chemical property Y can be quantitatively calculated accounting for contributions of fragments using linear equation (1), as we told it before, ai are fragment contributions, Ni is the number of fragments of i type. The ao term is fragment independent. An extra term  $\Gamma = \Sigma$ cmDm can be used to describe any specific feature of the compound using external descriptors Dm (e.g., topological, electronic, etc.); by default  $\Gamma = 0$ . The equation (1) represents calculation of property Y by using additive contributions of fragments.

The contributions of ai are calculated by minimizing a functional

$$U(a_i) = \sum_{i=1}^n W_i (Y_{exp,i} - Y_{cal,i})^2 \Longrightarrow min$$
(9)

where n is the number of the compounds in the training set, wi the weight accounting for the accuracy of the experimental data,  $Y_{exp}$  and  $Y_{calc}$  are, respectively, experimental and calculated according to (1) property values (table 1) and the program plot: calculated vs experimental property for compound set (figure 2), graphical analysis of residuals (figure 3), LOO predicted vs experimental property for training set (figure 4) and LMO predicted vs experimental property for training set (figure 5).

In this work, our model took 582 descriptors (fragments), of which only 33 descriptors contributed in the determination of the calculation of the property.

Figure.1 chemical structure of anthranilic acid



Table1: A dataset of 100 anthranilic acids with anti-inlammatory activity

| mol | R <sub>1</sub>  | <b>R</b> <sub>2</sub>          | R <sub>3</sub> | $R_4$           | R <sub>5</sub>  | MED <sup>a</sup> | A <sub>exp</sub> | A <sub>cal</sub> | A <sub>exp</sub> - A <sub>cal</sub> |
|-----|-----------------|--------------------------------|----------------|-----------------|-----------------|------------------|------------------|------------------|-------------------------------------|
| 1   | Н               | Н                              | Н              | Н               | Н               | 200              | 1.300000         | 1.503339         | -0.203339                           |
| 2   | Η               | CF <sub>3</sub>                | Н              | Н               | Н               | 3.3              | 3.080000         | 2.808559         | 0.271441                            |
| 3   | Н               | CH <sub>3</sub>                | Н              | Н               | Н               | 100              | 1.600000         | 1.652845         | -0.052845                           |
| 4   | Н               | Cl                             | Н              | Н               | Н               | 25               | 2.200000         | 2.543298         | -0.343298                           |
| 5   | Н               | NH <sub>2</sub>                | Н              | Н               | Н               | 400              | 1.000000         | 1.010030         | -0.010030                           |
| 6   | Н               | OCH <sub>3</sub>               | Н              | Н               | Н               | 50               | 1.900000         | 1.503339         | 0.396661                            |
| 7   | Н               | $SO_2N(CH_3)_2$                | Н              | Н               | Н               | 50               | 1.900000         | 1.707636         | 0.192364                            |
| 8   | Н               | COCH <sub>3</sub>              | Н              | Н               | Н               | 200              | 1.300000         | 1.375310         | -0.075310                           |
| 9   | Н               | $N(CH_3)_2$                    | Н              | Н               | Н               | 100              | 1.600000         | 1.622921         | -0.022921                           |
| 10  | Н               | Н                              | Cl             | Н               | Н               | 200              | 1.300000         | 0.774721         | 0.525279                            |
| 11  | Н               | $C_4H_9$                       | Н              | Н               | Н               | 200              | 1.300000         | 1.363197         | -0.063197                           |
| 12  | Н               | CN                             | Н              | Н               | Н               | 25               | 2.200000         | 2.400071         | -0.200071                           |
| 13  | Н               | C <sub>3</sub> H <sub>7</sub>  | Н              | Н               | Н               | 50               | 1.900000         | 1.767528         | 0.132472                            |
| 14  | Н               | SCH <sub>3</sub>               | Н              | Н               | Н               | 100              | 1.600000         | 1.503339         | 0.096661                            |
| 15  | Н               | $NO_2$                         | Н              | Н               | Н               | 100              | 1.600000         | 1.685576         | -0.085576                           |
| 16  | Н               | OC <sub>2</sub> H <sub>5</sub> | Н              | Н               | Н               | 100              | 1.600000         | 1.503339         | 0.096661                            |
| 17  | Н               | Br                             | Н              | Н               | Н               | 50               | 1.900000         | 2.351296         | -0.451296                           |
| 18  | Н               | $C_2H_5$                       | Н              | Н               | Н               | 25               | 2.200000         | 2.171859         | 0.028141                            |
| 19  | Cl              | Н                              | Н              | Н               | Н               | 50               | 1.900000         | 2.094197         | -0.194197                           |
| 20  | CH3             | Н                              | Н              | Н               | Н               | 200              | 1.300000         | 1.503339         | -0.203339                           |
| 21  | Н               | Н                              | CH3            | Н               | Н               | 400              | 1.000000         | 1.164721         | -0.164721                           |
| 22  | Cl              | Н                              | Cl             | Н               | Н               | 100              | 1.600000         | 1.365578         | 0.234422                            |
| 23  | Н               | Cl                             | Cl             | Н               | Н               | 100              | 1.600000         | 1.814680         | -0.214680                           |
| 24  | CH3             | CH <sub>3</sub>                | Н              | Н               | Н               | 10.4             | 2.580000         | 2.510477         | 0.069523                            |
| 25  | CH3             | CF <sub>3</sub>                | Н              | Н               | Н               | 1                | 3.600000         | 3.666191         | -0.066191                           |
| 26  | CH3             | $SO_2N(CH_3)_2$                | Н              | Н               | Н               | 6.2              | 2.800000         | 2.722831         | 0.077169                            |
| 27  | CH3             | NH2                            | Н              | Н               | Н               | 50               | 1.900000         | 2.246686         | -0.346686                           |
| 28  | CH3             | $N(CH_3)_2$                    | Н              | Н               | Н               | 6.2              | 2.800000         | 2.859577         | -0.059577                           |
| 29  | CH3             | Cl                             | Н              | Н               | Н               | 5.3              | 2.870000         | 2.996924         | -0.126924                           |
| 30  | CH3             | OCH <sub>3</sub>               | Н              | Н               | Н               | 6.2              | 2.800000         | 2.950619         | -0.150619                           |
| 31  | Н               | CF <sub>3</sub>                | Н              | CF <sub>3</sub> | Н               | 100              | 1.600000         | 1.600000         | -0.000000                           |
| 32  | Br              | CF <sub>3</sub>                | Н              | Н               | Н               | 1.6              | 3.390000         | 3.595250         | -0.205250                           |
| 33  | Br              | Br                             | Н              | Н               | Н               | 3.1              | 3.110000         | 3.137988         | -0.027988                           |
| 34  | Н               | CH <sub>3</sub>                | Н              | CH <sub>3</sub> | Н               | 100              | 1.600000         | 1.314226         | 0.285774                            |
| 35  | Cl              | Н                              | Н              | Н               | CH <sub>3</sub> | 12.5             | 2.500000         | 2.992235         | -0.492235                           |
| 36  | Br              | CN                             | Н              | Н               | Н               | 1.5              | 3.420000         | 3.186762         | 0.233238                            |
| 37  | F               | Cl                             | Н              | Н               | Н               | 3.1              | 3.110000         | 2.543298         | 0.566702                            |
| 38  | Н               | Cl                             | Н              | Cl              | Н               | 50               | 1.900000         | 2.217521         | -0.317521                           |
| 39  | Cl              | Cl                             | Н              | Н               | Н               | 2.1              | 3.270000         | 2.663507         | 0.606493                            |
| 40  | CH <sub>3</sub> | NO <sub>2</sub>                | Н              | Н               | Н               | 3.1              | 3.110000         | 2.922232         | 0.187768                            |
| 41  | CH <sub>3</sub> | CN                             | Н              | Н               | Н               | 3.1              | 3.110000         | 3.257703         | -0.147703                           |

| 42  | CH <sub>3</sub>               | C <sub>2</sub> H <sub>5</sub>                    | Η                             | Η               | Η                             | 3.1  | 3.110000 | 3.029491 | 0.080509  |
|-----|-------------------------------|--------------------------------------------------|-------------------------------|-----------------|-------------------------------|------|----------|----------|-----------|
| 43  | Cl                            | Н                                                | Н                             | Η               | Cl                            | 3.1  | 3.110000 | 2.486483 | 0.623517  |
| 44  | Cl                            | CH <sub>3</sub>                                  | Н                             | Н               | Н                             | 6.2  | 2.800000 | 2.697328 | 0.102672  |
| 45  | Cl                            | Н                                                | Н                             | C1              | Н                             | 12.5 | 2.500000 | 2.389331 | 0.110669  |
| 46  | CH <sub>3</sub>               | Н                                                | Н                             | Н               | CH <sub>3</sub>               | 50   | 1.900000 | 2.062759 | -0.162759 |
| 47  | CH <sub>3</sub>               | Н                                                | Н                             | CH <sub>3</sub> | Н                             | 200  | 1.300000 | 1.503339 | -0.203339 |
| 48  | Н                             | CH <sub>3</sub>                                  | CH <sub>2</sub>               | Н               | Н                             | 200  | 1.300000 | 1.314226 | -0.014226 |
| 49  | CH <sub>3</sub>               | Н                                                | CH <sub>3</sub>               | Н               | Н                             | 400  | 1.000000 | 0.826103 | 0.173897  |
| 50  | CH <sub>2</sub>               | $SO_2N(CH_2)_2$                                  | Н                             | Н               | Cl                            | 0.7  | 3,750000 | 3.827169 | -0.077169 |
| 51  | Cl                            | Cl                                               | Н                             | Cl              | Н                             | 3.1  | 3.110000 | 2.958642 | 0.151358  |
| 52  | H H                           | Cl                                               | Cl                            | Cl              | Н                             | 200  | 1 300000 | 1.018253 | 0.281747  |
| 53  | CH <sub>2</sub>               | CH <sub>2</sub>                                  | Н                             | CH <sub>2</sub> | Н                             | 25   | 2.200000 | 2.171859 | 0.028141  |
| 54  | CH <sub>2</sub>               | Н                                                | CH <sub>2</sub>               | CH <sub>2</sub> | Н                             | 100  | 1.600000 | 1.683735 | -0.083735 |
| 55  | Н                             | Cl                                               | CH <sub>3</sub>               | Cl              | Н                             | 100  | 1.600000 | 2.006750 | -0.406750 |
| 56  | CH <sub>3</sub>               | Н                                                | CH <sub>3</sub>               | Н               | CH <sub>3</sub>               | 400  | 1.000000 | 1.046904 | -0.046904 |
| 57  | Cl                            | SO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> | Н                             | Н               | Cl                            | 1.3  | 3.480000 | 3.402831 | 0.077169  |
| 58  | Cl                            | OCH <sub>3</sub>                                 | Н                             | Н               | Cl                            | 0.3  | 4.120000 | 3.905000 | 0.215000  |
| 59  | CH <sub>3</sub>               | Br                                               | Н                             | Н               | CH <sub>3</sub>               | 1.6  | 3.390000 | 2.910716 | 0.479284  |
| 60  | Cl                            | CN                                               | Н                             | Н               | Cl                            | 1.6  | 3.390000 | 3.836841 | -0.446841 |
| 61  | CH <sub>3</sub>               | Cl                                               | Н                             | Н               | Cl                            | 3.1  | 3.110000 | 3.389210 | -0.279210 |
| 62  | CH <sub>3</sub>               | Cl                                               | Н                             | Н               | CH <sub>3</sub>               | 0.4  | 4.000000 | 3.556344 | 0.443656  |
| 63  | Cl                            | OC <sub>2</sub> H <sub>5</sub>                   | Н                             | Н               | Cl                            | 0.8  | 3.690000 | 3.905000 | -0.215000 |
| 64  | CH <sub>3</sub>               | COCH <sub>3</sub>                                | Н                             | Н               | CH <sub>3</sub>               | 0.9  | 3.640000 | 3.744712 | -0.104712 |
| 65  | CH <sub>3</sub>               | N(CH <sub>3</sub> ) <sub>2</sub>                 | Н                             | Н               | CH <sub>3</sub>               | 1.6  | 3.390000 | 3.418997 | -0.028997 |
| 66  | C <sub>2</sub> H <sub>5</sub> | NO2                                              | Н                             | Н               | C <sub>2</sub> H <sub>5</sub> | 12.5 | 2.500000 | 2.677674 | -0.177674 |
| 67  | NH <sub>2</sub>               | Cl                                               | Н                             | Н               | CH <sub>3</sub>               | 25   | 2.200000 | 2.216149 | -0.016149 |
| 68  | CH <sub>3</sub>               | CH <sub>3</sub>                                  | Н                             | C1              | Н                             | 25   | 2.200000 | 2.184699 | 0.015301  |
| 69  | CH <sub>3</sub>               | CN                                               | Н                             | Н               | CH <sub>3</sub>               | 0.4  | 4.000000 | 3.438622 | 0.561378  |
| 70  | CH <sub>3</sub>               | SCH <sub>3</sub>                                 | Н                             | Н               | CH <sub>3</sub>               | 0.4  | 4.000000 | 3.872166 | 0.127834  |
| 71  | CH <sub>3</sub>               | NO <sub>2</sub>                                  | Н                             | Н               | Cl                            | 1.6  | 3.390000 | 3.314518 | 0.075482  |
| 72  | CH <sub>3</sub>               | C <sub>3</sub> H <sub>7</sub>                    | Н                             | Н               | CH <sub>3</sub>               | 6.2  | 2.800000 | 2.806079 | -0.006079 |
| 73  | C <sub>2</sub> H <sub>5</sub> | SO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> | Н                             | Н               | C <sub>2</sub> H <sub>5</sub> | 12.5 | 2.500000 | 2.427038 | 0.072962  |
| 74  | $C_2H_5$                      | COCH <sub>3</sub>                                | Н                             | Н               | $C_2H_5$                      | 25   | 2.200000 | 2.095288 | 0.104712  |
| 75  | Cl                            | Н                                                | CF <sub>3</sub>               | Н               | Cl                            | 0.8  | 3.690000 | 3.690000 | -0.000000 |
| 76  | CH <sub>3</sub>               | SO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> | Н                             | Н               | CH <sub>3</sub>               | 0.5  | 3.900000 | 4.076463 | -0.176463 |
| 77  | CH <sub>3</sub>               | NH <sub>2</sub>                                  | Н                             | Н               | Cl                            | 6.2  | 2.800000 | 2.638972 | 0.161028  |
| 78  | CH <sub>3</sub>               | CH <sub>3</sub>                                  | Н                             | Н               | Cl                            | 12.5 | 2.500000 | 2.902764 | -0.402764 |
| 79  | Cl                            | Cl                                               | Н                             | Н               | CH <sub>3</sub>               | 0.8  | 3.690000 | 3.561545 | 0.128455  |
| 80  | Cl                            | Н                                                | C <sub>2</sub> H <sub>5</sub> | Н               | Cl                            | 0.8  | 3.690000 | 3.512326 | 0.177674  |
| 81  | Cl                            | Н                                                | Cl                            | C1              | Н                             | 400  | 1.000000 | 1.190064 | -0.190064 |
| 82  | Cl                            | Cl                                               | Cl                            | Н               | Н                             | 200  | 1.300000 | 1.934889 | -0.634889 |
| 83  | Cl                            | Н                                                | Cl                            | Н               | Cl                            | 100  | 1.600000 | 1.757864 | -0.157864 |
| 84  | NH <sub>2</sub>               | CH <sub>3</sub>                                  | Η                             | Η               | CH <sub>3</sub>               | 25   | 2.200000 | 2.183851 | 0.016149  |
| 85  | CH <sub>3</sub>               | CH <sub>3</sub>                                  | Η                             | Η               | CH <sub>3</sub>               | 6.2  | 2.800000 | 2.691396 | 0.108604  |
| 86  | Cl                            | CH <sub>3</sub>                                  | Η                             | Η               | CH <sub>3</sub>               | 3.1  | 3.110000 | 3.216865 | -0.106865 |
| 87  | CH <sub>3</sub>               | Cl                                               | Η                             | CH <sub>3</sub> | Η                             | 1.6  | 3.390000 | 2.996924 | 0.393076  |
| 88  | CH <sub>3</sub>               | C <sub>2</sub> H <sub>5</sub>                    | Η                             | Η               | CH <sub>3</sub>               | 1.6  | 3.390000 | 3.210410 | 0.179590  |
| 89  | CH <sub>3</sub>               | NH <sub>2</sub>                                  | Η                             | Η               | Cl                            | 1.3  | 3.480000 | 3.251863 | 0.228137  |
| 90  | CH <sub>3</sub>               | SO <sub>2</sub> CH <sub>3</sub>                  | Н                             | Η               | CH <sub>3</sub>               | 0.6  | 3.820000 | 3.872166 | -0.052166 |
| 91  | Cl                            | N(CH <sub>3</sub> ) <sub>2</sub>                 | Н                             | Н               | Cl                            | 0.6  | 3.820000 | 4.042193 | -0.222193 |
| 92  | CH <sub>3</sub>               | SOCH <sub>3</sub>                                | Н                             | Н               | CH <sub>3</sub>               | 0.5  | 3.900000 | 3.872166 | 0.027834  |
| 93  | Cl                            | Cl                                               | Cl                            | Н               | CH <sub>3</sub>               | 12.5 | 2.500000 | 2.832926 | -0.332926 |
| 94  | CH <sub>3</sub>               | CH <sub>3</sub>                                  | Н                             | CH <sub>3</sub> | CH <sub>3</sub>               | 100  | 1.600000 | 2.352778 | -0.752778 |
| 95  | Cl                            | Cl                                               | Cl                            | Н               | Cl                            | 12.5 | 2.500000 | 2.327175 | 0.172825  |
| 96  | Cl                            | CH <sub>3</sub>                                  | Cl                            | Н               | Cl                            | 12.5 | 2.500000 | 2.035218 | 0.464782  |
| 97  | Cl                            | Cl                                               | Cl                            | Cl              | Η                             | 100  | 1.600000 | 1.759374 | -0.159374 |
| 98  | Cl                            | Cl                                               | Н                             | Cl              | Cl                            | 1.6  | 3.390000 | 3.350928 | 0.039072  |
| 99  | Cl                            | Cl                                               | Cl                            | Cl              | Cl                            | 25   | 2.200000 | 2.151661 | 0.048339  |
| 100 | CH <sub>2</sub>               | CH <sub>2</sub>                                  | C1                            | CH <sub>2</sub> | C1                            | 100  | 1 600000 | 1 637597 | -0.037597 |

a: the biological activity A was calculated from the minimal effective dose (MED mg/kgbody) by formula: A= log(4000/MED)

We are not going to represent the matrix of contribution (33\*100), because it is big enough. But, we are going to give the two better calculated property equations (10, 11), because their residual are equal to 0.



#### Figure 2: calculated vs. experimental property for compound set









# **Scholar Research Library**



Figure 4: LOO predicted vs. experimental property for training set





$$\begin{split} Y_{cal,75} = -0.398275(0.16) \times N_{c-c=0} + 0.204297(0.0705) \times N_{c-N-c} + 1.236656(0.125) \times N_{c-C-C-N} \\ & -0.49331(0.158) \times N_{c=C-C-N} + 1.44728(0.241) \times N_{c-C-C-0} - 0.338618(0.0577) \\ & \times N_{c-c-c=c-c} - 0.887086(0.281) \times N_{c-c=c-c-F} + 0.597106(0.177) \times N_{c-c=c-C-F} \\ & -0.325778(0.103) \times N_{cl-c=c-c} + 0.916635(0.138) \times N_{cl-c=c-N-c-c-c-0} \\ & + 0.453626(0.151) \times N_{cl-c-c-c} \end{split}$$

With (According the descriptor matrix)  $N_{c-c=0} = 1, N_{c-N-c} = 1, N_{c-c-c-N} = 2, N_{c=c-c-N} = 2, N_{c-c-c-0} = 1, N_{c-c-c-c-c-0} = 3, N_{c-c-c-c-c-0} = 3, N_{c-c-c-c-c-0} = 3, N_{c-c-c-c-c-0} = 6, N_{cl-c=c-c-c-0} = 1, N_{cl-c-c-c-0} = 1, N_{cl-c-c-c-0} = 1$ 

A total number of 100 models, sharing 33 descriptors among them, were obtained through MLR. All these 33 descriptors along with their brief meaning, average regression coefficients and total incidence, which will

## **Scholar Research Library**

serve as a measure of their estimate across these models. These models have accounted for up to 91.75 ( $R^2$ =0.9175) percent variance in the observed activities.

The results of the QSAR study give rise to QSAR models with good predictive ability for anti-inflammatory activity. Linear regression for the total data set of 100 anthranilic derivative in the present study with the anti-inflammatory activity demonstrated that the fragment descriptors (C-C=O, C-N-C, C-C-N, C=C-C-N, C-C-C-O) appears to be the governing factors for the anti-inflammatory potency for synthesized anthranilic derivatives.

- For residual:  $|A_{exp} A_{cal}| \le 2.10^{-1}$ , 69 out of 100 equations were predicted correctly.
- For residual:  $|A_{exp} A_{cal}| < 10^{-1}$ , 35 out of 100 equations were predicted correctly.
- For residual:  $|A_{exp} A_{cal}| < 0.05$ , 18 out of 100 equations were predicted correctly.
- For residual:  $|A_{exp} A_{cal}| = 0$ , 2 out of 100 equations were predicted correctly.

#### **Topochemical models**

The values of topochemical indices were calculated using an in-house computer program. Resulting data was analyzed and suitable models were developed after identification of the active ranges by maximization of moving average with respect to active compounds (<35 % = inactive, 35-6 5 % = transitional, >65% = active).[21] Subsequently, each compound was assigned a biological activity using these models, which was then compared with the reported anti-inflammatory activity (table 2).

This is the proposed model for anti-inflammatory activity of anthranilic acids:

- for Wiener's index, lower inactive range is > 775, transitional range is  $775 \rightarrow < 900$ , active range is  $900 \rightarrow < 1074$ , upper inactive range is  $\ge 1074$
- for Zagreb's index M1, lower inactive range is > 100, transitional range is  $100 \rightarrow < 104$ , active range is  $104 \rightarrow < 112$ , upper inactive range is  $\geq 112$
- for Zagreb's index M2, lower inactive range is > 112, transitional range is  $112 \rightarrow < 121$ , active range is  $121 \rightarrow < 129$ , upper inactive range is  $\geq 129$
- for eccentric connectivity's index, lower inactive range is > 296, transitional range is  $296 \rightarrow < 313$ , active range is  $313 \rightarrow < 336$ , upper inactive range is  $\geq 336$

| N0 | Activity | W    | M1  | M2  | $\xi^{c}$ | Α | W  | M1 | M2 | ECI |
|----|----------|------|-----|-----|-----------|---|----|----|----|-----|
| 1  | 1,301    | 447  | 78  | 88  | 217       | - | -  | 1  | -  | -   |
| 2  | 3,083    | 828  | 102 | 116 | 304       | - | -+ | -+ | -+ | -+  |
| 3  | 1,602    | 528  | 84  | 95  | 232       | - | -  | -  | -  | -   |
| 4  | 2,204    | 528  | 84  | 95  | 232       | - | -  | -  | -  | -   |
| 5  | 1        | 528  | 84  | 95  | 232       | - | -  | -  | -  | -   |
| 6  | 1,903    | 626  | 88  | 100 | 270       | - | -  | -  | -  | -   |
| 7  | 1,903    | 1074 | 112 | 130 | 363       | - | -  | 1  | -  | -   |
| 8  | 1,301    | 726  | 94  | 107 | 287       | - | -  | 1  | -  | -   |
| 9  | 1,602    | 726  | 94  | 107 | 287       | - | -  | -  | -  | -   |
| 10 | 1,301    | 538  | 84  | 96  | 255       | - | -  | -  | -  | -   |
| 11 | 1,301    | 877  | 96  | 108 | 357       | - | -+ | -  | -  | -   |
| 12 | 2,204    | 626  | 88  | 100 | 270       | - | -  | -  | -  | -   |
| 13 | 1,903    | 742  | 92  | 104 | 310       | - | -  | 1  | -  | -+  |
| 14 | 1,602    | 626  | 88  | 100 | 270       | - | -  | 1  | -  | -   |
| 15 | 1,602    | 726  | 94  | 107 | 287       | - | -  | -  | -  | -   |
| 16 | 1,602    | 742  | 92  | 104 | 310       | - | -  | -  | -  | -+  |
| 17 | 1,903    | 528  | 84  | 95  | 232       | - | -  | -  | -  | -   |
| 18 | 2,204    | 626  | 88  | 100 | 270       | - | -  | -  | -  | -   |
| 19 | 1,903    | 518  | 84  | 96  | 230       | - | -  | -  | -  | -   |
| 20 | 1,301    | 518  | 84  | 96  | 230       | - | -  | -  | -  | -   |
| 21 | 1        | 538  | 84  | 95  | 255       | - | -  | -  | -  | -   |
| 22 | 1,602    | 613  | 90  | 103 | 268       | - | -  | -  | -  | -   |
| 23 | 1,602    | 622  | 90  | 103 | 270       | - | -  | -  | -  | -   |
| 24 | 2,585    | 602  | 90  | 104 | 245       | - | -  | -  | -  | -   |
| 25 | 3,602    | 914  | 108 | 125 | 317       | + | +  | +  | +  | +   |
| 26 | 2,809    | 1170 | 118 | 139 | 376       | - | -  | -  | -  | -   |
| 27 | 1,903    | 602  | 90  | 104 | 245       | - | -  | -  | -  | -   |
| 28 | 2,809    | 808  | 100 | 116 | 300       | - | -+ | -+ | -+ | -+  |
| 29 | 2,877    | 602  | 90  | 104 | 245       | - | -  | -  | -  | -   |
| 30 | 2,809    | 704  | 94  | 109 | 283       | - | -  | -  | -  | -   |

Table 2: Relationships between topochemical indices and activity of derivates anthranilic acids

| 31         1.602         1297         126         144         370         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t tr="">          311         101</t>                                                                                                                             |     |        |      |     |      |      |          |          |          | -   |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|------|-----|------|------|----------|----------|----------|-----|--------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31  | 1.602  | 1297 | 126 | 144  | 370  | -        | -        | -        | -   | -            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22  | 2,207  | 014  | 100 | 105  | 217  |          |          |          |     |              |
| 33         3,11         602         90         104         247         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t tr="">          1311<td>32</td><td>3,397</td><td>914</td><td>108</td><td>125</td><td>317</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td></t>      | 32  | 3,397  | 914  | 108 | 125  | 317  | +        | +        | +        | +   | +            |
| 34         1,602         613         90         102         247         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t t=""></t> --                                                                                                                                  | 33  | 3.11   | 602  | 90  | 104  | 245  | -        | -        | -        | -   | -            |
| 34         1,002         013         90         104         243         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t t=""></t> --                                                                                                                                  | 24  | 1,000  | (12  | 00  | 100  | 0.47 |          |          |          |     |              |
| 35       2,505       593       90       104       243       -       -       -       -         36       3,426       704       94       109       243       -       -       -       -         37       3,11       602       90       104       245       -       -       -       -         38       3,179       602       90       104       245       -       -       -       -         40       3,11       704       94       109       283       -       -       -       -       -         41       3,11       704       94       109       283       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <t< td=""><td>34</td><td>1,602</td><td>613</td><td>90</td><td>102</td><td>247</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>                                                                                                                     | 34  | 1,602  | 613  | 90  | 102  | 247  | -        | -        | -        | -   | -            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35  | 2.505  | 593  | 90  | 104  | 243  | -        | -        | -        | -   | -            |
| 36         3.42b         704         94         109         285         +         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t t=""></t> --                                                                                                                                  | 20  | 2,200  | 704  | 04  | 100  | 202  |          | -        | -        |     | -            |
| 37       3,11       602       90       104       245       -       -       -       -         39       3,279       602       90       104       245       +       -       -       -         40       3,11       808       100       116       300       -       -+       ++       +       -         41       3,11       704       94       109       283       -       -       -       -         42       3,11       704       94       109       283       -       -       -       -         43       3,11       704       94       109       245       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                      | 36  | 3,426  | /04  | 94  | 109  | 283  | +        | -        | -        |     | -            |
| 1003         613         90         102         247         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -          1311                                                                                                                                                | 37  | 3.11   | 602  | 90  | 104  | 245  | -        | -        | -        | -   | -            |
| 38       1,903       613       90       104       245       +       -       -       -         40       3,11       808       100       116       300       -       ++       ++       ++       ++         41       3,11       704       94       109       283       -       -       -       -         42       3,11       704       94       109       283       -       -       -       -       -         43       3,11       704       94       109       283       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                         | 20  | 1,002  | 602  | 20  | 100  | 213  |          |          |          |     |              |
| 39         3,279         602         90         104         230         -         -         -         -           40         3,11         704         94         109         283         -         -         -         -           41         3,11         704         94         109         283         -         -         -         -           42         3,11         704         94         109         283         -         -         -         -           43         3,11         704         94         103         243         -         -         -         -         -           44         2,809         602         90         104         243         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td>38</td><td>1,903</td><td>613</td><td>90</td><td>102</td><td>247</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>            | 38  | 1,903  | 613  | 90  | 102  | 247  | -        | -        | -        | -   | -            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39  | 3 279  | 602  | 90  | 104  | 245  | +        | -        | -        | -   | -            |
| 40         3,11         808         100         116         300 $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ 41         3,11         704         94         109         283 $\cdot$ $\cdot$ $\cdot$ $\cdot$ 42         3,11         704         94         109         283 $\cdot$ $\cdot$ $\cdot$ $\cdot$ 43         3,11         593         90         104         243 $\cdot$ $\cdot$ $\cdot$ $\cdot$ 44         1,800         602         90         103         245 $\cdot$ 51         3,101                                                                                                                                                                                                                                                                                                                                                                                          | 57  | 5,277  | 002  | 70  | 104  | 245  |          | -        | -        | -   | -            |
| 41       3.11       704       94       109       283       -       -       -         42       3.11       593       90       104       243       -       -       -         43       3.11       593       90       104       243       -       -       -       -         44       2.809       602       90       103       225       -       -       -       -         45       2.505       604       90       103       270       -       -       -       -         46       1.903       593       90       103       268       -       -       -       -       -         47       1.301       692       96       111       280       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                         | 40  | 3,11   | 808  | 100 | 116  | 300  | -        | -+       | -+       | -+  | -+           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41  | 3.11   | 704  | Q/I | 100  | 283  | _        | _        | _        | _   | _            |
| 42       3,11       704       94       109       243       -       -       -         43       3,11       593       90       104       243       -       -       -       -         44       2,809       602       90       103       245       -       -       -       -         45       2,505       604       90       103       245       -       -       -       -         46       1,901       593       90       104       243       -       -       -       -       -         47       1,301       900       106       124       313       -       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       -       -       -       -       -       -       -                                                                                                                                                                                                                                                             | 71  | 5,11   | 704  | 74  | 107  | 205  | _        | -        | -        | -   | -            |
| 43       3.11       593       90       104       243       -       -       -       -         44       2.809       602       90       104       243       -       -       -       -         45       2.505       604       90       103       245       -       -       -       -         46       1.903       593       90       103       270       -       -       -       -         47       1.301       602       90       103       270       -       -       -       -         50       3.757       1282       124       147       389       +       -       -       -       -         51       3.11       692       96       111       280       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                      | 42  | 3,11   | 704  | 94  | 109  | 283  | -        | -        | -        | -   | -            |
| 13       13       10       104       245       1       1       1       1         44       2,809       602       90       104       245       -       -       -       -         45       2,505       604       90       103       245       -       -       -       -         46       1,903       593       90       103       245       -       -       -       -         47       1,301       602       90       103       268       -       -       -       -       -         49       1       613       90       103       268       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td>13</td> <td>3 1 1</td> <td>503</td> <td>00</td> <td>104</td> <td>2/13</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                       | 13  | 3 1 1  | 503  | 00  | 104  | 2/13 |          |          |          |     |              |
| 44       2.809       602       90       104       245       -       -       -         45       2.505       604       90       103       245       -       -       -       -         47       1.301       900       106       124       313       -       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<                                                                                                                                                                                                                                                    | 43  | 3,11   | 393  | 90  | 104  | 243  | -        | -        | -        | -   | -            |
| 45       2,505       604       90       103       245       -       -       -       -         46       1,903       593       90       104       243       -       -       -       -         47       1,301       622       90       103       270       -       -       -       -         48       1,301       622       90       103       270       -       -       -       -         50       3,757       1282       124       147       389       +       -       -       -       -         51       3,11       692       96       111       280       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                           | 44  | 2,809  | 602  | 90  | 104  | 245  | -        | -        | -        | -   | -            |
| 4.5       2.1.0.3       503       90       104       2.4.3       -       -       -       -         47       1.301       900       106       124       313       -       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                      | 45  | 2 505  | 604  | 00  | 103  | 245  |          |          |          |     |              |
| 46       1,903       593       90       104       243       -       -       -       -         47       1,301       622       90       103       270       -       -       -       -         49       1       613       90       103       270       -       -       -       -         50       3,757       1282       124       147       389       +       -       -       -         51       3,11       692       96       111       285       -       -       -       -         53       2,204       692       96       111       285       -       -       -       -       -         54       1,602       702       96       111       285       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                 | 45  | 2,505  | 004  | 90  | 105  | 245  | -        | -        |          | -   | -            |
| 47       1,301       900       106       124       313 $\cdot$ $+$ $+$ $+$ $+$ $+$ 48       1,301       622       90       103       270 $   -$ 50       3,757       1282       124       147       389 $+$ $  -$ 51       3,11       692       96       111       286 $   -$ 52       1,301       710       96       111       285 $                                                     -$ <t< td=""><td>46</td><td>1,903</td><td>593</td><td>90</td><td>104</td><td>243</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46  | 1,903  | 593  | 90  | 104  | 243  | -        | -        | -        | -   | -            |
| 47       1.301       500       1.500       1.24       3.13       1       1       1       1         48       1.301       622       90       103       270       -       -       -       -         49       1       613       90       103       268       -       -       -       -         50       3.757       1282       124       147       389       +       -       -       -         51       3.11       692       96       111       285       -       -       -       -         53       2.204       692       96       111       285       -       -       -       -       -         54       1.602       702       96       111       286       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                            | 47  | 1 301  | 000  | 106 | 124  | 313  |          |          |          |     |              |
| 48       1,301       622       90       103       270       -       -       -       -         49       1       613       90       103       268       -       -       -       -         50       3,757       1282       124       147       389       +       -       -       -       -         51       3,204       692       96       111       285       -       -       -       -       -         53       2,204       692       96       111       285       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                            | 47  | 1,501  | 900  | 100 | 124  | 515  | -        | +        | +        | +   | +            |
| 49       1       613       90       103       268       -       -       -       -         50       3,757       1282       124       147       389       +       -       -       -         51       3,11       692       96       111       285       -       -       -       -         53       2,204       692       96       111       285       -       -       -       -         54       1,602       702       96       111       285       -       -       -       -         55       1,602       710       96       112       258       -       -       -       -         54       1,242       790       100       117       296       +       +       +       -         58       4,124       790       100       117       296       +       +       +       +       -         60       3,397       790       100       117       296       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       + </td <td>48</td> <td>1,301</td> <td>622</td> <td>90</td> <td>103</td> <td>270</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                | 48  | 1,301  | 622  | 90  | 103  | 270  | -        | -        | -        | -   | -            |
| 49       1       013       200       103       208       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td< td=""><td>40</td><td>1</td><td>612</td><td>00</td><td>102</td><td>260</td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                          | 40  | 1      | 612  | 00  | 102  | 260  |          |          |          |     |              |
| 50         3,757         1282         124         147         389         +         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -          55         3,397                                                                                                                                          | 49  | 1      | 015  | 90  | 105  | 208  | -        | -        | -        | -   | -            |
| 51         3,11         692         96         111         260         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <                                                                                                                               | 50  | 3,757  | 1282 | 124 | 147  | 389  | +        | -        | -        | -   | -            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51  | 3 1 1  | 602  | 06  | 111  | 260  | 1        | 1        |          |     | 1            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51  | 3,11   | 092  | 90  | 111  | 200  | -        |          | <u> </u> | -   | -            |
| 53         2,204         692         96         111         280         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -        <                                                                                                                               | 52  | 1,301  | 710  | 96  | 111  | 285  | -        | -        | -        | -   | -            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52  | 2 204  | 602  | 06  | 111  | 260  | 1        | 1.       | _        | _   | -            |
| 54       1,602       702       96       111       283       -       -       -       -       -         55       1,602       710       96       111       285       -       -       -       -       -         56       1       682       96       112       258       -       -       -       -       -         57       3,488       1282       124       147       389       +       -       -       +       +       +       +       -       -       +       -       -       +       +       +       +       +       -       -       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                          | 55  | 2,204  | 092  | 90  | 111  | 200  | -        | -        | <u> </u> | -   | -            |
| 55         1,602         710         96         111         285         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -        <                                                                                                                               | 54  | 1,602  | 702  | 96  | 111  | 283  | -        | -        | -        | -   | -            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55  | 1.602  | 710  | 06  | 111  | 205  |          | 1        |          |     | 1            |
| 56         1         682         96         112         258         -         -         -         -         -           58         4,124         790         100         117         296         +         ++         ++         ++         ++           59         3,397         682         96         112         258         +         -         -         +           60         3,397         790         100         117         296         +         ++         +         +           61         3,11         682         96         112         258         +         -         -         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         + </td <td>55</td> <td>1,002</td> <td>/10</td> <td>90</td> <td>111</td> <td>283</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> | 55  | 1,002  | /10  | 90  | 111  | 283  | -        | -        |          | -   | -            |
| 57       3,488       1282       124       147       389       +       -       -       -         58       4,124       790       100       117       296       +       -+       -+       -+         59       3,397       682       96       112       258       +       -       -       ++         60       3,397       790       100       117       296       +       ++       ++       -         61       3,11       682       96       112       258       -       -       -+       -         63       3,699       918       104       121       336       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                         | 56  | 1      | 682  | 96  | 112  | 258  | -        | -        | -        | -+  | -            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57  | 3 199  | 1202 | 124 | 147  | 390  |          | 1        |          |     |              |
| 58       4,124       790       100       117       296       +       -+       -+       -+       -+         59       3,397       682       96       112       258       +       -       -       ++       +       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++                                                                                                                                                                                                     | 51  | 3,468  | 1282 | 124 | 14/  | 389  | +        | -        |          | -   | -            |
| 59         3,397         682         96         112         258         +         -         -         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         + <t t=""></t>                                                                                                                                     | 58  | 4,124  | 790  | 100 | 117  | 296  | +        | -+       | -+       | -+  | -+           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50  | 3 207  | 602  | 06  | 112  | 250  |          | 1        |          |     | t 1          |
| 60 $3,397$ 790       100 $117$ $296$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $                                                                                           -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57  | 3,371  | 002  | 90  | 112  | 238  | +        | -        | <u> </u> | -+  | -            |
| 61       3,11       682       96       112       258       -       -       -+       -         62       4       682       96       112       258       +       -       -+       -         63       3,699       918       104       121       336       +       +       +       +         64       3,647       900       106       112       313       +       +       +       +         65       3,397       900       106       112       313       +       +       +       +         66       2,505       1126       114       134       343       -       -       -       -         67       2,204       682       96       112       258       -       -       -       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                            | 60  | 3,397  | 790  | 100 | 117  | 296  | +        | -+       | -+       | -+  | -+           |
| 01         03.11         002         90         112         2.36         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                       | 61  | 3 1 1  | 602  | 06  | 112  | 250  |          | 1        |          |     | t 1          |
| 62       4       682       96       112       258       +       -       -       -+       -         63       3,699       918       104       121       336       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                      | 01  | 5,11   | 002  | 90  | 112  | 238  | -        | -        |          | -+  | -            |
| 63 $3,699$ 918       104       121 $336$ +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                             | 62  | 4      | 682  | 96  | 112  | 258  | +        | -        | -        | -+  | -            |
| 05       3,097       918       104       121       330       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                         | 62  | 2 600  | 019  | 104 | 101  | 220  |          | t .      | <u> </u> | · · | <u> </u>     |
| 64 $3,647$ 900 $106$ $1124$ $313$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $                                                                  -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03  | 3,099  | 718  | 104 | 121  | 330  | +        | +        | +        | +   | -            |
| 653,397900106112313++++++662,5051126114134343672,20468296112258682,20469296111260694790100117296++++++704790100117296+++++++713,397900106124313+++++++722,809918104121336-++++++++++++++++++++732,5051548132157419<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64  | 3,647  | 900  | 106 | 124  | 313  | +        | +        | +        | +   | +            |
| 3.57 $200$ $112$ $313$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ <t t=""></t> <tt>       70&lt;</tt>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65  | 3 207  | 000  | 104 | 110  | 212  |          |          |          |     |              |
| 66       2,505       1126       114       134       343       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                        | 00  | 3,371  | 700  | 100 | 112  | 515  | +        | +        | +        | -+  | +            |
| 672,204 $682$ $96$ $112$ $258$ $     68$ 2,204 $692$ $96$ $111$ $260$ $     69$ 4790 $100$ $117$ $296$ $+$ $-+$ $++$ $++$ $-+$ $70$ 4790 $100$ $117$ $296$ $+$ $-+$ $++$ $++$ $++$ $71$ $3,397$ $900$ $106$ $124$ $313$ $+$ $+$ $+$ $+$ $72$ $2,809$ $918$ $104$ $121$ $336$ $ +$ $+$ $+$ $+$ $73$ $2,505$ $1548$ $132$ $157$ $419$ $    74$ $2,204$ $1126$ $114$ $133$ $330$ $+$ $    75$ $3,699$ $1168$ $114$ $133$ $330$ $+$ $  +$ $+$ $76$ $3,903$ $1282$ $124$ $147$ $389$ $+$ $    77$ $2,809$ $682$ $96$ $112$ $258$ $     79$ $3,699$ $790$ $100$ $117$ $296$ $+$ $-+$ $+$ $+$ $+$ $80$ $3,699$ $790$ $100$ $117$ $283$ $    82$ $1,301$ $700$ $96$ $112$ $28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66  | 2,505  | 1126 | 114 | 134  | 343  | -        | -        | -        | -   | -            |
| 67       2,204       682       96       112       238       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                          | (7  | 2.204  | (92  | 06  | 110  | 250  |          |          |          |     |              |
| 68       2,204       692       96       111       260       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                          | 6/  | 2,204  | 682  | 96  | 112  | 258  | -        | -        | -        | -+  | -            |
| 69 $4$ $790$ $100$ $117$ $296$ $+$ $++$ $++$ $++$ $++$ $70$ $4$ $790$ $100$ $117$ $296$ $+$ $-+$ $++$ $++$ $++$ $71$ $3,397$ $900$ $106$ $124$ $313$ $+$ $+$ $+$ $++$ $++$ $71$ $3,397$ $900$ $106$ $124$ $313$ $+$ $+$ $+$ $+$ $72$ $2,809$ $918$ $104$ $121$ $336$ $ +$ $+$ $+$ $73$ $2,505$ $1548$ $132$ $157$ $419$ $    74$ $2,204$ $1126$ $114$ $133$ $343$ $    75$ $3,699$ $1168$ $114$ $133$ $330$ $+$ $   77$ $2,809$ $682$ $96$ $112$ $258$ $   +$ $77$ $2,809$ $682$ $96$ $112$ $258$ $   +$ $79$ $3,699$ $790$ $100$ $117$ $296$ $+$ $-+$ $+$ $+$ $80$ $3,699$ $790$ $100$ $117$ $283$ $    81$ $1$ $702$ $96$ $111$ $283$ $    81$ $1.602$ $692$ $96$ $112$ $258$ $    84$ <td>68</td> <td>2.204</td> <td>692</td> <td>96</td> <td>111</td> <td>260</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                  | 68  | 2.204  | 692  | 96  | 111  | 260  | -        | -        | -        | -   | -            |
| 694790100117296+-+-+-+-+-+704790100117296+-+-+-+-+-+713,397900106124313++++++722,809918104121336-++++-732,5051548132157419742,2041126114134343753,6991168114133330+763,9031282124147389+772,80968296112258++782,50568296112258++793,69968296112283821,30170096112283831,60269296112258842,20468296112258852,80968296112258 <td>60</td> <td>,0 .</td> <td>700</td> <td>100</td> <td>117</td> <td>200</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60  | ,0 .   | 700  | 100 | 117  | 200  |          |          |          |     |              |
| 70       4       790       100       117       296       +       ++       ++       ++       ++         71 $3,397$ 900       106       124 $313$ +       +       +       +         72 $2,809$ 918       104       121 $336$ -       +       +       +         73 $2,505$ 1548       132       157 $419$ -       -       -       -         74 $2,204$ 1126       114       134 $343$ -       -       -       -       -         75 $3,699$ 1168       114       133 $330$ +       -       -       -       -         76 $3,903$ 1282       124       147       389       +       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <t< td=""><td>69</td><td>4</td><td>/90</td><td>100</td><td>11/</td><td>296</td><td>+</td><td>-+</td><td>-+</td><td>-+</td><td>-+</td></t<>                                                                                                                                                                                                                                      | 69  | 4      | /90  | 100 | 11/  | 296  | +        | -+       | -+       | -+  | -+           |
| 71 $3,397$ $900$ $106$ $124$ $313$ $+$ $+$ $+$ $72$ $2,809$ $918$ $104$ $121$ $336$ $ +$ $+$ $+$ $73$ $2,505$ $1548$ $132$ $157$ $419$ $    74$ $2,204$ $1126$ $114$ $133$ $330$ $+$ $    75$ $3,699$ $1168$ $114$ $133$ $330$ $+$ $                                                   -$ <td>70</td> <td>4</td> <td>790</td> <td>100</td> <td>117</td> <td>296</td> <td>+</td> <td>-+</td> <td>-+</td> <td>-+</td> <td>-+</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70  | 4      | 790  | 100 | 117  | 296  | +        | -+       | -+       | -+  | -+           |
| 71 $3,397$ $900$ $106$ $124$ $313$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ <td>71</td> <td>2 207</td> <td>000</td> <td>100</td> <td>104</td> <td>212</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71  | 2 207  | 000  | 100 | 104  | 212  |          |          |          |     |              |
| 72 $2,809$ $918$ $104$ $121$ $336$ $ +$ $+$ $+$ $+$ $+$ $+$ $                                                                                            -$ <td>/1</td> <td>3,397</td> <td>900</td> <td>106</td> <td>124</td> <td>313</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /1  | 3,397  | 900  | 106 | 124  | 313  | +        | +        | +        | +   | +            |
| 73 $2,505$ $1548$ $132$ $157$ $419$ $                                                                                                   -$ <td>72</td> <td>2.809</td> <td>918</td> <td>104</td> <td>121</td> <td>336</td> <td>-</td> <td>+</td> <td>+</td> <td>+</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72  | 2.809  | 918  | 104 | 121  | 336  | -        | +        | +        | +   | -            |
| 73 $2,505$ $1548$ $132$ $157$ $419$ $                          +$ $+$ $+$ $   +$ $+$ $+$ $+$ $+$ $  +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $                                               -$ <td>72</td> <td>2,007</td> <td>1540</td> <td>101</td> <td>1.57</td> <td>410</td> <td></td> <td><u> </u></td> <td>-</td> <td></td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72  | 2,007  | 1540 | 101 | 1.57 | 410  |          | <u> </u> | -        |     | -            |
| 74 $2,204$ $1126$ $114$ $134$ $343$ $                                                                                                   -$ </td <td>13</td> <td>2,505</td> <td>1548</td> <td>132</td> <td>157</td> <td>419</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13  | 2,505  | 1548 | 132 | 157  | 419  | -        | -        | -        | -   | -            |
| 75 $3,699$ $1168$ $114$ $133$ $330$ $+$ $ +$ $+$ $76$ $3,903$ $1282$ $124$ $147$ $389$ $+$ $    77$ $2,809$ $682$ $96$ $112$ $258$ $    78$ $2,505$ $682$ $96$ $112$ $258$ $     79$ $3,699$ $682$ $96$ $112$ $258$ $      +$ $                                           -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 74  | 2.204  | 1126 | 114 | 134  | 343  | -        | -        | -        | -   | -            |
| 75       3,699       1168       114       133       330       +       -       -       +       +       +         76       3,903       1282       124       147       389       +       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                        | 7.  | 2,201  | 1120 | 114 | 100  | 220  |          |          |          |     |              |
| 76 $3,903$ $1282$ $124$ $147$ $389$ $+$ $                                                                                                  -$ </td <td>15</td> <td>3,699</td> <td>1168</td> <td>114</td> <td>133</td> <td>530</td> <td>+</td> <td>-</td> <td>-</td> <td>+</td> <td>+</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15  | 3,699  | 1168 | 114 | 133  | 530  | +        | -        | -        | +   | +            |
| 77 $2,809$ $682$ $96$ $112$ $258$ $                                                                                                   -$ <td>76</td> <td>3.903</td> <td>1282</td> <td>124</td> <td>147</td> <td>389</td> <td>+</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76  | 3.903  | 1282 | 124 | 147  | 389  | +        | -        | -        | -   | -            |
| 1/1 $2,809$ $082$ $96$ $112$ $258$ $                                                                                                   -$ <td>77</td> <td>2,200</td> <td>(00</td> <td>04</td> <td>110</td> <td>050</td> <td><u> </u></td> <td>t</td> <td>t</td> <td>· .</td> <td><b>├───┤</b></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 77  | 2,200  | (00  | 04  | 110  | 050  | <u> </u> | t        | t        | · . | <b>├───┤</b> |
| 78       2,505       682       96       112       258       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                          | 11  | 2,809  | 682  | 90  | 112  | 238  | -        | -        | -        | -+  | -            |
| 79 $3,699$ $682$ $96$ $112$ $225$ $+$ $ +$ $+$ $+$ $  +$ $  +$ $  +$ $                                                                           -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78  | 2,505  | 682  | 96  | 112  | 258  | - 1      | -        | -        | -+  | -            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70  | 2 600  | 600  | 04  | 110  | 250  |          | 1        | t        |     |              |
| 80       3,699       790       100       117       296       +       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       ++       +       +       +       +       +       +       +       ++       ++       ++       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                      | 19  | 5,099  | 002  | 90  | 112  | 238  | +        | -        |          | -+  | -            |
| 811 $702$ $96$ $111$ $283$ $    82$ $1,301$ $700$ $96$ $112$ $283$ $    83$ $1,602$ $692$ $96$ $111$ $281$ $    84$ $2,204$ $682$ $96$ $112$ $258$ $    84$ $2,204$ $682$ $96$ $112$ $258$ $    85$ $2,809$ $682$ $96$ $112$ $258$ $    86$ $3,11$ $682$ $96$ $112$ $258$ $    87$ $3,397$ $692$ $96$ $111$ $260$ $+$ $   88$ $3,397$ $790$ $100$ $117$ $296$ $+$ $ +$ $+$ $89$ $3,488$ $900$ $106$ $124$ $313$ $+$ $+$ $+$ $+$ $90$ $3,823$ $1012$ $114$ $133$ $330$ $+$ $+$ $+$ $+$ $91$ $3,823$ $900$ $106$ $124$ $313$ $+$ $+$ $+$ $+$ $92$ $3,903$ $900$ $106$ $124$ $313$ $+$ $+$ $+$ $+$ $93$ $2,505$ $784$ $102$ $120$ $273$ $    +$ $96$ $2,505$ $784$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80  | 3,699  | 790  | 100 | 117  | 296  | +        | -+       | -+       | -+  | -+           |
| 1 $702$ $90$ $111$ $203$ $                                                                                                    -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q1  | 1      | 702  | 06  | 111  | 202  | 1        | 1        |          |     | 1            |
| 82       1,301       700       96       112       283       -       -       -       -+       -         83       1,602       692       96       111       281       -       -       -       -       -         84       2,204       682       96       112       258       -       -       -       -         85       2,809       682       96       112       258       -       -       -       -+       -         86       3,11       682       96       112       258       -       -       -       -+       -         87       3,397       692       96       111       260       +       -       -       -       -         88       3,397       790       100       117       296       +       ++       +       +         90       3,823       1012       114       133       330       +       +       +       +         91       3,823       900       106       124       313       +       +       +       +         93       2,505       784       102       120       296 <t< td=""><td>01</td><td>1</td><td>102</td><td>90</td><td>111</td><td>203</td><td>-</td><td></td><td><u> </u></td><td>-</td><td>-</td></t<>                                                                                                                | 01  | 1      | 102  | 90  | 111  | 203  | -        |          | <u> </u> | -   | -            |
| 83 $1,602$ $692$ $96$ $111$ $281$ $    -$ 84 $2,204$ $682$ $96$ $112$ $258$ $    -$ 85 $2,809$ $682$ $96$ $112$ $258$ $    -$ 86 $3,11$ $682$ $96$ $112$ $258$ $   -$ 87 $3,397$ $692$ $96$ $111$ $260$ $+$ $  -$ 88 $3,397$ $790$ $100$ $117$ $296$ $+$ $  -$ 89 $3,488$ $900$ $106$ $124$ $313$ $+$ $+$ $+$ $+$ 90 $3,823$ $1012$ $114$ $133$ $330$ $+$ $+$ $+$ $+$ 91 $3,823$ $900$ $106$ $124$ $313$ $+$ $+$ $+$ $+$ 92 $3,903$ $900$ $106$ $124$ $313$ $+$ $+$ $+$ $+$ 93 $2,505$ $784$ $102$ $120$ $296$ $    -$ 95 $2,505$ $784$ $102$ $120$ $296$ $     -$ 96 $2,505$ $784$ $102$ $120$ $296$ $           -$ 97 $1,602$ $775$ $102$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82  | 1,301  | 700  | 96  | 112  | 283  | -        | -        | -        | -+  | -            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83  | 1.602  | 602  | 06  | 111  | 281  | 1        | 1.       | -        | _   | -            |
| 84       2,204 $682$ $96$ $112$ $258$ $  -+$ $ 85$ 2,809 $682$ $96$ $112$ $258$ $  -+$ $ 86$ $3,11$ $682$ $96$ $112$ $258$ $  -+$ $ 87$ $3,397$ $692$ $96$ $111$ $260$ $+$ $   88$ $3,397$ $790$ $100$ $117$ $296$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ <t< td=""><td>0.5</td><td>1,002</td><td>092</td><td>90</td><td>111</td><td>201</td><td>-</td><td><u> </u></td><td><u> </u></td><td>-</td><td>-</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5 | 1,002  | 092  | 90  | 111  | 201  | -        | <u> </u> | <u> </u> | -   | -            |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84  | 2,204  | 682  | 96  | 112  | 258  | -        | -        | -        | -+  | -            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85  | 2 800  | 682  | 96  | 112  | 258  | L        | 1        | _        |     |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5 | 2,009  | 002  | 90  | 112  | 230  | -        | <u> </u> | <u> </u> |     | -            |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86  | 3,11   | 682  | 96  | 112  | 258  | -        | -        | -        | -+  | -            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87  | 3 307  | 602  | 96  | 111  | 260  |          | 1        | _        | _   |              |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07  | 5,571  | 092  | 90  | 111  | 200  | +        |          | <u> </u> | -   | -            |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88  | 3,397  | 790  | 100 | 117  | 296  | +        | -+       | -+       | -+  | -+           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80  | 3 / 88 | 900  | 106 | 124  | 313  | Ŧ        | 1        | 1        | 1   | +            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 07  | 5,400  | 200  | 100 | 124  | 515  | т        | <u> </u> | - T      | r   | 1            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90  | 3,823  | 1012 | 114 | 133  | 330  | +        | +        | -        | +   | +            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91  | 3 823  | 900  | 106 | 124  | 313  | +        | +        | +        | +   | +            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21  | 3,023  | 200  | 100 | 124  | 515  | T        |          |          | r - |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92  | 3,903  | 900  | 106 | 124  | 313  | +        | +        | +        | +   | +            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03  | 2 505  | 78/  | 102 | 120  | 206  | -        | لہ ج     |          |     |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75  | 2,303  | 704  | 102 | 120  | 290  | -        |          | - 17     |     | -1.          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94  | 1,602  | 775  | 102 | 120  | 273  | -        | -+       | -+       | -+  | -            |
| 25 $2505$ $764$ $102$ $120$ $270$ $-1$ $-1$ $-1$ $96$ $2,505$ $784$ $102$ $120$ $296$ $ -+$ $-+$ $-+$ $-+$ $-+$ $97$ $1,602$ $793$ $102$ $120$ $298$ $ -+$ $-+$ $-+$ $98$ $3,397$ $775$ $102$ $120$ $273$ $+$ $-+$ $-+$ $99$ $2,204$ $880$ $108$ $129$ $311$ $ +$ $-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95  | 2 505  | 784  | 102 | 120  | 296  | -        | -+       | -+       | _+  | -+           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,,  | 2,303  | 704  | 102 | 120  | 290  | -        |          | - 17     |     | -1.          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96  | 2,505  | 784  | 102 | 120  | 296  | -        | -+       | -+       | -+  | -+           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97  | 1.602  | 793  | 102 | 120  | 298  | -        | -+       | -+       | -+  | -+           |
| 98         3,39/         7/5         102         120         273         +         +         -+         -+           99         2,204         880         108         129         311         -         +         +         -+         -+           100         102         120         211         -         +         +         -         +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 1,002  | 775  | 102 | 120  | 270  | <u> </u> | - T      | - F      | , r |              |
| 99 2,204 880 108 129 311+ ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98  | 3.397  | 775  | 102 | 120  | 273  | +        | -+       | -+       | -+  | -+           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | - )    |      |     |      |      |          |          |          |     |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99  | 2,204  | 880  | 108 | 129  | 311  | -        | -+       | +        | -   | -+           |

-: Inactive compound (compounds having A less than 3.204),+: active compound, +-: transitional, W—Wiener's index,  $\xi^c$ —eccentric connectivity index, M1— Zagreb index M1and M2—Zagreb index M2 and A-- reported activity. The methodology used in the present studies aims at the development of suitable models for providing lead molecules through exploitation of the active ranges in the proposed models based on topochemical indices. Proposed models are unique and differ widely from conventional QSAR models. Both systems of modeling have their own advantages and limitations. In the instant case, the modeling system adopted has distinct advantage of identification of narrow active range(s), which may be erroneously skipped during routine regression analysis in conventional QSAR modeling. Since the ultimate goal of modeling is to provide lead structures, therefore, these active ranges can play vital role in lead identification [22].

Retrofit analysis of the data in table 2 reveals following information with regard to Wiener's topochemical index:

- 54 out 60 compounds in the lower inactive range were predicted correctly (90%).
- A transitional range with index values of 775 to <900 was observed. Existence of a transitional range is ideal because it simply indicates gradual change in biological activity.
- 10 out of 12 compounds in the active range were predicted correctly (83.33%).
- 6 out 10 compounds in the upper inactive range were predicted correctly (60%)
- The overall predictability of the model based upon the wiener's index was 85.36 %.

Retrofit analysis of the data in table 2 reveals following information with regard to Zagreb's topochemical index\_M1:

- 55 out 61 compounds in the lower inactive range were predicted correctly (90.16%).
- A transitional range with index values of 100 to <104 was observed. Existence of a transitional range is ideal because it simply indicates gradual change in biological activity.
- 9 out of 13 compounds in the active range were predicted correctly (69.23%).
- 6 out 11 compounds in the upper inactive range were predicted correctly (54.54%)

• The overall predictability of the model based upon the Zagreb's index\_M1 was 84.7%.

Retrofit analysis of the data in table 2 reveals following information with regard to Zagreb's topochemical index\_M2:

• 46 out 49 compounds in the lower inactive range were predicted correctly. (93.8%)

• A transitional range with index values of 112 to <121 was observed. Existence of a transitional range is ideal because it simply indicates gradual change in biological activity.

- 10 out of 8 compounds in the active range were predicted correctly. (80%)
- 13 out 8 compounds in the upper inactive range were predicted correctly (61.53%)
- The overall predictability of the model based upon the Zagreb's index\_M2 was 87.5 %.

Retrofit analysis of the data in table 2 reveals following information with regard to eccentric connectivity's topochemical index:

• 57 out 60 compounds in the lower inactive range were predicted correctly (95%).

• A transitional range with index values of 296 to <313 was observed. Existence of a transitional range is ideal because it simply indicates gradual change in biological activity.

- 10 out of 11 compounds in the active range were predicted correctly (90.9%).
- 8 out 12 compounds in the upper inactive range were predicted correctly (66.66%).
- The overall predictability of the model based upon the eccentric connectivity's index was 86, 58 %.

## CONCLUSION

The results and discussion made above lead to the conclusion that the anti-inflammatory activity of series of anthranilic acids can be successfully modeled using structural molecular fragment and topological indices. The study using structural molecular fragment revealed that for anti-inflammatory activity, 33 out of 582 descriptors (fragments) were contributed for a good prediction of our model. Linear correlation between experimental and predicted property is very good ( $R^2$ = 0.9175). The studies using topological models are unique and differ widely from conventional QSAR models, the model based upon Zagreb's topochemical index\_M2: has also demonstrated good predictability. Amongst the Zagreb indices, M2 has proven to be better in this study with higher predictability than M1.

## REFERENCES

- [1] J.C. Dearden, J.C. Duffy, J.Pharm. pharmacol., 1993, 45, 1142-1146.
- [2] J.C. Dearden, J.C. Duffy, C. J.C., Roston, J. Pharm. pharmacol., 1996, 48(9), 883-886.
- [3] J. R. Vane, Nature., 1971, 231, 232-235.
- [4] D.S. Goodsell; Oncologist 5, 2000, 169-171.
- [5] S. Debyani, R.K. Sahu, Researcher., 2010. 2(10), 17-23.

[6] V. P. Solov'ev, A. Varnek, G. Wipff, J. Chem. Inf. Comput. Sci., 2000, 40, 847-858.

[7] ISIDA (In Silico Design and Data Analysis) Sofware, http://infochim.ustrasbg.fr/recherche/isida/index.php: 2007.

[8] A.Varnek, D. Fourches, F. Hoonaker, V. Solov'ev J. Comput. Aided Mol. Des., 2005, 19(9-10), 693-703.

[9] D. Horvath, F. Bonachera, V. Solov'ev, C.Gaudin, A. Varnek, J. Chem. Inf. Model., 2007, 47(3), 927-939.

[10] V.P. Solov'ev, A. Varnek, Rus. Chem. Bull., 2004, 53(7), 1434-1445.

[11] A.Varnek, N. Kireeva, I. V. Tetko, I. Baskin, V. Solov'ev, J. Chem. Inf. Model. 2007, 47(3), 1111–1122.

[12] I. V Tetko, V.P. Solov'ev, A.V. Antonov, X.Yao, J.P. Doucet, B.Fan, F. Hoonakker, D. Fourches, P. Jost, J. Chem. Inf. Model. 2006, 46(2), 808–819.

[13] F.E Grubbs, Technometrics. 1969, 11, 1-21.

[14] S. Gupta, M. Singh, A. K. Madan, J. Math. Anal. Appl. 2002, 266, 259-268.

- [15] A. Ilic, I. Gutman, B. Furtula, Math. Chem. Monogr, 2010, 9, 139-168.
- [16] V. Sharma, R. Goswami, A. K. Madan, J. Chem. Inform. Model., 1997, 37, 273-282.
- [17] H. Wiener, J. Am. Chem. Soc., **1947**, 69, 2636-2638.
- [18] S. Bajaj, S.S. Sambi, A. K. Madan, J. Mol. Struct. (THEOCHEM)., 2004, 684, 197-203.
- [19] I. Gutman, N. Trinajstic, Chem. Phys. Lett., 1972, 17, 535–538.
- [20] U. Oleg, K. Gabriel, V.D. Mircea, Rev. Roum. Chim. 2004, 3400, 1-12.
- [21] S.Gupta, M. Singh, A. K. Madan, J. Comput. Aid. Mol. Des., 2001, 15, 671-678.
- [22] H. Dureja, A. K. Madan, J. Mol. Graph. Mod., 2006, 25, p. 373-379.