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ABSTRACT

Polycyclic aromatic hydrocarbons are toxic, carayemic and are widely distributed in the environmétdcurate
prediction of their aqueous Henry’'s law constanit tve of immense help to environmental scientistdatermining
the fate of these chemicals in the environmentthis study, a Genetic function approximation (GRRSPR
analysis of some selected poly aromatic hydrocasl{®RAHs) was performed using different moleculecdgtors.
Five models for predicting the HLC of PAHs were agared. A seven parameter model with=R0.996, F%adj =
0.994, @ = 0.989,R - Q= 0.007, R,eq. = 0.758, f — 1,° / 1* =0.00, ¥ — 1>/ r* = 0.00, K = 0.998, K= 1 was
selected as the optimization model based on statigignificance. The Euclidean based applicapilitomain for
training and test set compounds hinted that all tbenpounds fell within the applicability domaintbé optimum
QSPR model. The molecular descriptors; BCUTp-1IA Eeta_ns, nFRing, topoDiameter, DPSA-2, LOBMIN,
WD.mass were found to have profound influence enptiedictive ability of the model. It is envisionthat the
model will found excellent application in the pretthn of Henry’s law constant of poly aromatic hgdarbons that
fall within its applicability domain.

Keywords: PAHs, QSPR, descriptors, Henry's law constant, GFA

INTRODUCTION

Polycyclic aromatic hydrocarbons(PAHSs) are a grofiphemicals that are formed during the incompbeteing of

coal, oil, gas, wood, garbage, or other organistuies, such as tobacco and charbroiled meat. BreHmajorly

derived from two processes: petro genic and pyregamcesses. The petro genic part derives frormaoidl drilling

activities, including oil disasters, spills, andlption from industrial sites, refineries, and masiportantly traffic

exhaust emissions, while the pyrogenic part derfves fires, forest fires, volcanic eruptions, aindineration.

PAHs have long degradation periods, and recentestighow high accumulated concentrations in sqilatic, and
atmospheric environments [1-4]. A few PAHs are usedhedicines, production of dyes, plastics, anstipiles.

Others are important constituents of asphalt usadad construction, crude oil, coal, coal tar Ipitcreosote, and
roofing tar [5].

Polycyclic aromatic hydrocarbons are globally disited environmental contaminants with issues eeld@b their
known toxic and bio accumulative characteristick [& humans, health risks associated with PAHsoskpe
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include cancer, DNA damage, tumor, reproductiveectsf and damage to the skin, body fluids, andrtimeune
system [5, 7-9].

For elucidating the environmental dynamics of PAitlss important to have sufficient data on the paund’s air—
water partition coefficient. This knowledge is vempportant for elucidating where the compounds teod
accumulate as well as evaluating the rate of temnBétween the two phases. Conventionally, thetes rare
expressed as the products of kinetic constant ascimass transfer coefficient and the degree ofrtepafrom
equilibrium which exist between the two phases.ciglating the direction and the rate transfer of RAtHus
requires accurate values for the Henry's consti®it According to Henry's law, the equilibrium ratietween the
abundances in the gas phase and in the aqueousiplamstant for a dilute solution [11].

Henry’s law constant (HLC) is a measure of the eotiation of a chemical in air over its concentratin water. A
PAH with a high HLC will volatilize from water intair and be distributed over a large area. Chemiwith a low
HLC tend to persist in water and may be adsorbed sail. The HLC value is an integral part in cdéding the
volatility of a chemical.

Henry’s Law constant for a chemical is generallgressed in one of two ways [12]:

Concentration in gas phase
HLC =

~ Concentration in liquid phase

(1)

Liquid vapour pressure

HLC = , — (2
Chemical solubility

Chemicals with a high HLC tend to volatilize fromater and be distributed in the atmosphere. A chalimiith a
low HLC will tend to accumulate in water and soather than volatilize. This can be an environmleotacern

since the accumulation of chemicals in water carezalverse effects upon living organisms [12].

As a result of the enormous number of chemicalaaifial and potential concern, the difficulties aubt of
experimentaldeterminations, and scientific intergstelucidating the fundamental molecular determigaof
physical-chemicalproperties, considerable effors leen devoted to generating quantitative strugitoperty
relationships (QSPRs) models. This concept is basezbservations of linear free-energy relationshgmd usually
takes the form of a plot or regression of the prgpef interest as a function of an appropriate ecalar descriptor
which can be calculated using only a knowledge oferular structure or a readily accessible molecptaperty
[10].

The aim of this research is to build statisticalbpust quantitative structure property relationshipdels for
predicting the Henry's law constant of poly aroradtydrocarbons.

MATERIALS AND METHODS

The compounds in the data set were optimized USPWRTAN'14 V1.1.0 molecular modelling software onPH
650 computer system (Intel Pentium), 2.43GHz premes4GB ram size on Microsoft windows 7 Ultimate
operating system. The molecules were pre-optimizgith the molecular mechanics procedure included in
Spartan’14 V1.1.0 software and the resulting geaewetvere further refined by means of Semi-emplir{pan3)
method. This is termed the “Cascade method” [18]s Thethod of geometry optimization was used bezdus
less computationally taxing by relegating initiabagnetry calculations to less computationally initesgand
possibly more inaccurate) method.

Data set
A data set comprising of series of 27PAHs with theiperimental Henry's law constant values (HLC)juea
expressed on a logarithmic scale as pHLCwere téi@n literature [10]for this study. 20 PAHs wereedsas
training set for building the models while the rénireg 7 were used as test set for external vabidatf the most
statistically significant QSPR model. The notatistructure, HLC and pHLC of the compounds are shimwhable
1 below.
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Table 1: PAHs with their Experimental HLC

S/n Compound HLC| pHLC
0.51
cl 3.24
Phenanthrene
i i -0.04
€2 0.919
Pyrene
I 1.09
c3 12.17
Acenaphthene
0.6
c4 3.961
Anthracen
I 0.09
C5 1.22
Benz[a]anthracene
-1.29
Benz[a]anthracene
Cc7 OQQQ 0.044
Benzo[k]fluoranthen
. 0.43
C8 2.70
Benzol[a]flourene
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co 0.957
Flouranthene
0.9
C10 7.87
Flourene
j 0.7
C11 5.00
1-methyl phenanthrene
1.65
C12 44.89
1-Methyl naphthalene
1.63
C13 43.00
Naphthalene
1.71
C14 51.19
1-Methyl naphthaler
1.49
31.11
C15
1,4-Dimethyl naphthalene
1.8
C16 62.49
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2,3-Dimethyl naphthalene
159
C17 38.82
1-ethyl naphthalene
| 1.89
c18 S 78.11
2-ethyl naphthalene
/
1.74
c19 A 55.21
1, 4, 5-Trimethyl naphthalene
237
c20 232.8
Indan
1.46
c21 28.64
Biphenyl
0.93 -0.032
Cc22
Diphenylmethane
1.29
c23 19.63
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Bibenzyl

\ 1.61
Cc24 40.40

Trans-stilbene

&
e

0.92
€25 8.396
Acenaphthylen
I 1.09
C26 12.17
Acenaphthene

0.22
c27 1.65

9-Methyl-anthracene

BUILDING OF QSPR MODEL

Genetic function approximation (GFA) method in Mé&ikstudio software was used in the building of thodels.
The experimentally determined HLCon logarithmiclecgpHLC) as the dependent variable and the condpute
descriptors as the independent variables. In géngrthe GFA optimum QSPR models, the nhumber otude®rs

in the regression equation was set to 5, and Populand Generation were set to 1,000 and 5,0Gpedively.
The number of top equations returned was 5. Muigti@bability was 0.1, and the smoothing parametes 0.5.
The statistical significance of the generated modetére assessed based on Friedman’'s LOF and theuapt
model was selected based on this parameter.

In Materials Studio, LOF is measured using a sligdriation of the original Friedman formula [14]hd revised
formula is:

LOF = SSE/{ — %)2 A3)
Where SSE is the sum of squares of errors, c iauh#er of terms in the model, other than the @mderm, d is a
user-defined smoothing parameter, p is the totatber of descriptors contained in all model terngmdring the
constant term) and M is the number of samplesértridining set.

Model Validation

Model validation was carried out in order to asgbgesobustness, fitting ability, stability, relifibi and predictive
ability of the developed models. The best GFA dstimodel obtained based on the model with the leaktof fit

(LOF) score was subjected to both internal andreatevalidation techniques and its validation pagters were
compared with the minimum recommended standardadoeptable QSAR model shown in Table 2.
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Internal validation was done using the data thettad the model. The QSAR models were internallidated
using the methods of least squares ), cross validation coefficienQf), adjusted®’(RPadj) and its confidence
interval of all regression model at 95% significdevel (@ value). External validation on the other hand was
performed on the basis of predictions of activitiésnolecules not used in the models using paramete external
test set’s coefficient of determinatior?gBd)[M].

Internal validation parameters
This validation is done using the data that crettbtedmodel. The various internal validation pararetnvoked in
this study are presented thus;

R? (the square of the correlation coefficient)s the proportion of variability in a data set timaccounted for by a
statistical model.It describes the fraction of thial variation attributed to the model. The cloger value of Ris to
1.0, the better the regression equation explaiasvttvariable. R is the most commonly used internal validation
indicator and is expressed as follows:

RZ=1- Y (Yobs—Ypred)? 4)

Y (Yobs—Ytraining)?

Where, Yobs; Ypred; Ytraining are the experimemadperty, the predicted property and the mean éxwpertal
property of the samples in the training set, repely [15].

Adjusted R? (Rzadj):is a modification of R-square that adjusts for tisenber of terms in a modé®-square always
increases when a new term is added to a modebdjusted R-square increases only if the new terprames the
model more than would be expected by chance. Thestdj R is defined as:

-1 (n-1)R?-P
Reag=1-(1 - R) - = ()

n-p+1
Where p = number of independent variables in thdehd.6].

Q? (Leave one out cross validation coefficient)The LOO cross validated coefficient3Qs given by;

Q=1 _X(Yp-v)? (6)

(y-ym)?

Where Yp and Y represent the predicted and obsemesidity respectively of the training set angithe mean
activity value of the training set[16].

Variance Ratio (F): this parameter is used to judge the overall sigaifce of the regression coefficient. It is the
ratio of regression mean square to deviations reqaare defined as:

Y (Ycal-ym)?
= p
F= /Z(Yabs—Ycal)2 (7)

N-P-1

WhereY,s stands for the observed response value, whilg i¥the model-derived calculated response apid ¥he
average of the observed response values.The F tiakiéwvo degrees of freedom: p, N — p — 1. The edetpF
value ofa model should be significant at p < 0A%igh F value is an indication that the regressioafficients are
significant [17].

Standard error of estimate (s):Low standard error of estimate is an indicatioraajood model. It is defined as
follows:

_ 2
S :\/(Yobs Ycal) (8)

N-P-1

Its degree of freedom is N-p-1 [18].
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Leave one out cross validation (LOOCV)in this cross validation approach, the model iatedly refit leaving
out a single observation and then used to derpeediction for the left-out observatiorFor the model to have an
excellent prediction ability, ©must be> 0.5 and’®’ — Q® value should not exceed 0.3. The equation for €V i

5 PRESS
Q=1- S (Yi—ym)? ©)
PRESS 3 (Ypred,i — Yi) (10)

Q? = LOOCYV cross validation coefficient?R coefficient of determination.

Yiis the data value(s) not used to construct the @deh) PRESS is the predictive residual sum of thesesym
= mean of the experimental bioactivity (pMIQ@pred, i is the predictedi[15].

Metrics for external validation
External validation of QSAR model is performed irder to ensure the predictability and applicability the
developed QSAR model for the prediction of untestezlecules. The various external validation mettised in
this work are highlighted thus:

Predictive R? (R yeq):R? pred. is termed the predictivé’ Bf a development model and is an important paramet
that is used to test the external predictive abifta QSAR model. The predicted Ralue is calculated as follows;

S[Yobs(test)-Ypred(test)]?
Y[Yobs(test)—Ym(training)]?

R2pred. =1

(11)

Y preditesy @NA Yops(resy indicate predicted and observed activity valuespeetively of the test set compounds and
Y m(raining) iNdicates mean activity value of the training [4&f.

Golbraikh and Tropsha’s criteria: according to Golbraikh and Tropsha, models areidensd satisfactory, if all
the following conditions are met.

() Res> 0.5

(b) RP-R?*/R)<0.1
() (RP=Ry/R)<0.1
(d) 0.85<k<1.15

(e) 0.85<k <1.15

Parameters Rand R? are the squared correlation coefficients betwéenabserved and predicted values of the
compounds with and without intercept, respectiv@lye parameter Rbears the same meaning witkfiut uses the
reversed axes. K is the intercept of the plot & dbserved and predicted values of the compoundsKathe
reversed axes intercept [18].

Table 2: Validation metrics for a generally acceptale QSAR model

S/n | Metric symbol Name Threshold
1 Coefficient of determination >0.6
2 Q LOO cross validation coefficie >0.t
3 Rored External test set’s coefficient of determination >0.6
4 - Difference between®and G <0.3
5 F value Variation ratio High
6 P/ P Golbraikh and Tropsha condition <0.1
7 F—ri/r Golbraikh and Tropsha condition <0.1
8 K and K Intercep 0.85<kork <1.1¢

Source: Roy et al.; Ravinchandranet al.; Golbragéidd Tropsha

QSAR Study Results and Discussion
The best performing QSAR models for predicting tery’s law constant of PAHs are represented byetsod], 2,
3, 4 and 5. The models, their internal validaticargmeters and detailed definition of the descriptior the
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modelsare shown in Tables 3, 4 and 5 respectiBaged on the model with the least LOF score antdtatistical

significance, model 1 was chosen as the optimiaatiodel for predicting the HLC of PAHS.

Table 3: GFA derived QSPR models for the pHLC of PAs

Model Equation

Definition of terms

X36: BCUTp-1l
X611: ETA_Beta_ns

pHLC = 0.212788074 * X36 — 0.186230525 * X611 — 0.089014980 * X686 + 0.250943018 igig: {‘;E'S%meter
* X748 — 0.002217301 * X771 — 0.290285405 * X803 — 1.202739805 :
1. % X839 + 2.258788057 X771: DPSA-2
: X803 : LOBMIN
X839 : WD.mass
X36 : BCUTp-1I
X47 : nBondsM
pHLC = 0.193503331 * X36 — 0.136428149 * X47 — 0.086104163 * X686 + 0.226182560 igig; ?O';E'B%meter
2, * X748 — 0.002550314 * X771 — 0.308283129 * X803 — 1.142537556 %771 DboA?

* X839 + 2.215240549

X803 : LOBMIN
X839 : WD.mas

3. pHLC = —0.136428149 * X7 + 0.193503331 * X36 — 0.086104163 * X686
+ 0.226182560 * X748 — 0.002550314 * X771 — 0.308283129
* X803 — 1.142537556 * X839 + 2.215240549

X7 : nAromBond
X36: BCUTp-1l
X686 : nFRing
X748 : topoDiameter
X771 : DPSA-2
X803 : LOBMIN
X839 : WD.mass

pHLC = 0.260929211 = X36 — 0.202419232 * X611 — 0.095435731 * X686

4. + 0.226364818 * X748 — 0.019758863 * X772

— 0.287694041 * X803 — 1.226705548 * X839 — 0.047663266
* X841 + 2.290859517

X36 : AS : BCUTp-1l
X611 : Ww
ETA Beta_ns

X686 : ZT : nFRing
X748 : ACD
topoDiameter

X772 : ADB : DPSA-3
X803 : AEG
LOBMIN

X839 : AFQ
WD.mass

X841 . AFS
Wlambda2.volume

pHLC = —0.153603875 * X7 + 0.244607053 * X36 — 0.091109132 = X686
+ 0.198559583 * X748 — 0.021832375 * X772 — 0.308995886
* X803 — 1.158389036 * X839 — 0.055049268 * X841
+ 2.258707794

X7 :J :nAromBond
X36: AS : BCUTp-1I
X686 : ZT : nFRing
X748 : ACD
topoDiameter

X772 : ADB : DPSA-3
X803 : AEG
LOBMIN

X839 : AFQ
WD.mass

X841 : AFS
Wlambda2.volume

Table 4: Validation Parameters of the models

S/n Parameters Model[l Modell2 Mode(3 Modgl4 Méde
1 | Friedman LOF 0.016 0.017 0.017 0.01y 0.018
2 | R-squared 0.996 0.996| 0.99 0.997 0.997
3 | Adjusted R-squared 0.994 0.994 0.9% 0.995 0.995
4 | Cross validated R-squared 0.98D 0.9848 0.988 0.9930.992
5 | Significant Regression Yes Yes Yes| Yeq Yes
6 Significance-of-regression F-value 464.2B8 446.32445.326| 486.361 475.86]7
7 | Critical SOR F-value (95%) 2.919 2.914 2.919 3.9% 2.953
8 | Replicate points 0 0 0 0 0
9 Computed experimental error 0 0 0 0 0
10 | Min expt. error for non-significant LOF (95%) 089 0.060 0.060 0.053 0.054
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Table 5: Detailed definition of descriptors

S/n | Descriptor symbol Definition

1 nAromBond Number of aromatic bonds

2 BCUTp-1I nhigh lowest polarizability weighted BC8

3 | nBondsM Total number of bonds that have bondragdeater than one
4 | ETA Beta_n A measure of electrerichness of the molect

5 LOBMIN The L/B ratio for the rotation that ressiin the minimum area
6 nFRing Number of fused rings

7 | topoDiameter Topological diameter (maximum at@eeatricity)

8 DPSA-2 Difference of FPSA-2 and PNSA-2

9 | Wlambda2.volume Directional WHIM, weighted by vder Waals volumes

1C | WD.mas:! Non-directional WHIM, weighted by atomic mas

Where PNSA-2 = Partial negative surface area 1 tatgative charge on the molecule
FPSA-2 = PPSA-2 / total molecular scefarea
PPSA-2 = Partial positive surface ar&ztal positive charge on the molecule

Actual pHLC

Residual

-1.5 -1

2.5 y = 1x
RZ = 0.29.6—3"

Pred. pHLC

Figure 1:Plot of actual pHLC against predicted pHLC

0.15

-0.15

Predicted pHCL

Figure 2: Residual plot of model 1
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Table 6: Comparison of Yobs (training) and Ypred.(taining) of model 1

Compound| V. Ype« | Residual
C1 0.510| 0.545] -0.035
c2 -0.040| -0.023  -0.017
C3 1.090| 1.078 0.012
C4 0.60C | 0.66z | -0.06:
C5 0.090 | 0.042 0.048
C6 -1.290| -1.191]  -0.099
c7 -1.360| -1.456  0.096
C8 0.430| 0.371 0.059
C9 -0.020| -0.042]  0.022
Cic 0.90C | 0.92¢ | -0.02¢
Cc11 0.70C | 0.79z | -0.09:
C12 1.650| 1.546 0.104
C13 1.630| 1.629 0.001
Cl4 1.710| 1.676 0.034
C15 1.490| 1512 -0.022
Cle 1.80C | 1.78¢ 0.012
C17 1.59C | 1.71¢ -0.12¢
C18 1.890| 1.833 0.057
C19 1.740| 1.690 0.050
C20 2.370| 2.388 -0.018

Table 7: External validation of Model 1

But from equation 11, Beq =1

Y[Yobs(test)-Ypred(test)]?

Thus, Ryeq=1— %) =0.758

Y[Yobs(test)-Ym(training)]?

Table 8: Euclidean based applicability domain for &st set compounds

Testcpd.| Distance Score  Mean Distarjce  NormalizedrivDistance|
Cc21 3033.555 151.678 1

C22 2683.448 134.172 0.792

Cc2: 2045.95: 102.29¢ 0.41¢

C24 1583.16 79.158 0.139

C25 1626.526) 81.32¢ 0.165

C26 2732.134 136.607 0.821

Cc27 2738.535 136.927 0.825

Available online at www.scholarsresearchlibrary.com

Test cpd Y%bs | BCUTp-11 | ETA Beta_ns| nFRing Digr)r?e?te DPSA-2 | LOBMIN | WD.mass
Cc21 1.255 6.823 6 1 4 103.44 1.172 0.45y
C22 1.415 6.637 12 0 7 122.84 2.375 0.57P
C23 1.362 6.597 12 0 8 159.21 1.762 0.54)
C24 1.623 6.577 12 0 9 197.88 2.395 0.67b
C2t 1.204 6.59¢ 13.5 0 9 193.1: 2.11¢ 0.59¢
C2¢ 1.322 7.368 11t 4 5 120.11. 2.5 0.612
Cc27 1.362 7.321 10 4 5 119.75 2.781 0.449

Test comp. \grec Ym (Yobs'Yprec)2 (Yobs'Ym)2
Cc21 1.885448| 0.874 0.397465 0.145161
C22 1.566714| 0.874 0.023017 0.292681
C23 1.41137| 0.874 0.002437 0.238144
C24 1.640206| 0.874 0.000296 0.561001
C25 1.223617| 0.874 0.000385 0.1089
C26 1.329702| 0.874 5.93E-05 0.200704
Cc27 1.271236| 0.874 0.008238 0.238144

> =0.431898| >=1.784735
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Table 9: Euclidean based applicability domain for taining set compounds

Training set cpd| Distance Scofe Mean Distapnce NlzethMean Distanceg
C1 1409.442 70.472 0.036
Cc2 1374.093 68.705 0.015
C3 1617.893 80.895 0.159
C4 1527.58: 76.37¢ 0.10¢
C5 2719.743 135.987 0.814
C6 2363.332 118.167 0.602
C7 2565.25 128.262 0.722
C8 1887.493 94.375 0.32
C9 1447.933 72.397 0.058
C1c 1349.49: 67.47¢ 0
C11 1589.84! 79.49: 0.142
C12 1425.134 71.257 0.045
C13 1521.999 76.1 0.102
Cl14 1405.68 70.284 0.033
C15 1358.475 67.924 0.005
C1€ 2080.39 104.0: 0.43¢
C17 1820.701 91.03¢ 0.2¢
C18 2112.537 105.627 0.453
C19 1660.846 83.042 0.185
C20 3033.372 151.669 1

Table 10: Golbraikh and Tropsha External Validation Parameters for the Optimum Model

s/n | paramete value
1 r’ 0.996
2 re 0.9963
3 [ 0.9963
4 k 0.9979
5 K 1

Based on the parameters above;
2 r02 /2= 0.9963-0.9963 _ 0.000
9963

. 0.9963-0.9963
P -1/ P=222 = 0,000
0.9963

The five Genetic Function Approximation derived @Sknodels are presented in Table 3. The validation
parameters and detailed definition of the desariptsed in the models are presented in Tables % aespectively.
Based on the model with the least LOF score antidbasstical significance, the hepta-parametricdeldmodel 1)
was selected as the optimization model for preaicthe Henry's law constant of polyaromatic hydrboas. The
validation parameters of the QSPR model is goodeagent with the minimum standard shown in Table RsaR

= 0.996, Ry= 0.994, @ = 0.989,R,cs = 0.758.The results in Table 10 also shows thab@ikh and Tropsha
criteria for robust QSPR model were also met.

The residual values of a QSPR model is the diffeedretween the experimental or observed valuetengdredicted
value by the model, the excellent predictabilitymddel 1lis evidenced by the low residual valuesolesl in Table
6 which gives the comparison of observed and predipHLC of the molecules. Also, the plot of preeidpHLC
against observed pHLC shown in Figure 1 indicates the model is well trained and it predicts we# pHLC of
the compounds. Furthermore, the plot of observedd(Mersus residual pHLC (Figure 2) indicates thegré was
no systemic error in model development as the gaipen of residuals was observed on both sidegiaf [49].

Applicability domain (AD) is the physicochemicalyisctural or biological space, knowledge or infotima on

which the training set of the model has been deezlo The resulting model can be reliably applicdbleonly

those compounds which are inside this domain.baised on distance scores calculated by the Eunligsgance
norms. At first, normalized mean distance scoretfaining set compounds are calculated and thelsevaanges
from 0 to 1(O=least diverse, 1=most diverse trarset compound). Then normalized mean distance: $oortest
set are calculated, and those test compounds wadtte ®utside O to 1 range are said to be outsiel@piplicability
domain [20].
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The applicability domain of the optimization modedodel 1) was also defined for test set (Tabler) taaining set
(Table 9) compounds using Euclidean based apprddah.results showed that all the compounds falhiwithe
applicability domain of the model as their normatiznean distance score fall within the range aid k&

CONCLUSION

A highly predictive Quantitative Structure PropeRglationship model was generated for the Henigig ¢onstant
of poly aromatic hydrocarbons. The molecular desars; BCUTp-1l, ETA Beta ns, nFRing, topoDiameter
DPSA-2, LOBMIN, WD.mass were found to have profounfiuence on the predictive ability of the optirmaiion
model. The robustness, applicability, and religpitf the optimum QSPR model has been establislyeedhlious
validation techniques. It is envisioned that thedelowill found excellent application in the preddct of Henry's
law constant of poly aromatic hydrocarbons thadtvihin its applicability domain.
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