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ABSTRACT 
 
Polycyclic aromatic hydrocarbons are toxic, carcinogenic and are widely distributed in the environment. Accurate 
prediction of their aqueous Henry’s law constant will be of immense help to environmental scientists in determining 
the fate of these chemicals in the environment. In this study, a Genetic function approximation (GFA)-QSPR 
analysis of some selected poly aromatic hydrocarbons (PAHs) was performed using different molecular descriptors. 
Five models for predicting the HLC of PAHs were generated. A seven parameter model with R2 = 0.996, R2

adj = 
0.994, Q2 = 0.989,R2 - Q2 = 0.007, R2

pred.  = 0.758, r2 – r0
2 / r2 =0.00, r2 – r‘0

2 / r2 = 0.00, K = 0.998, K’ = 1 was 
selected as the optimization model based on statistical significance. The Euclidean based applicability domain for 
training and test set compounds hinted that all the compounds fell within the applicability domain of the optimum 
QSPR model. The molecular descriptors; BCUTp-1l, ETA_Beta_ns, nFRing, topoDiameter, DPSA-2, LOBMIN, 
WD.mass were found to have profound influence on the predictive ability of the model. It is envisioned that the 
model will found excellent application in the prediction of Henry’s law constant of poly aromatic hydrocarbons that 
fall within its applicability domain. 
 
Keywords: PAHs, QSPR, descriptors, Henry’s law constant, GFA. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

Polycyclic aromatic hydrocarbons(PAHs) are a group of chemicals that are formed during the incomplete burning of 
coal, oil, gas, wood, garbage, or other organic substances, such as tobacco and charbroiled meat. PAHs are majorly 
derived from two processes: petro genic and pyrogenic processes. The petro genic part derives from oil- and drilling 
activities, including oil disasters, spills, and pollution from industrial sites, refineries, and most importantly traffic 
exhaust emissions, while the pyrogenic part derives from fires, forest fires, volcanic eruptions, and incineration. 
PAHs have long degradation periods, and recent studies show high accumulated concentrations in soil, aquatic, and 
atmospheric environments [1-4]. A few PAHs are used in medicines, production of dyes, plastics, and pesticides. 
Others are important constituents of asphalt used in road construction, crude oil, coal, coal tar pitch, creosote, and 
roofing tar [5]. 
 
Polycyclic aromatic hydrocarbons are globally distributed environmental contaminants with issues related to their 
known toxic and bio accumulative characteristics [6]. In humans, health risks associated with PAHs exposure 
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include cancer, DNA damage, tumor, reproductive defects, and damage to the skin, body fluids, and the immune 
system [5, 7-9]. 
 
For elucidating the environmental dynamics of PAHs, it is important to have sufficient data on the compound’s air–
water partition coefficient. This knowledge is very important for elucidating where the compounds tend to 
accumulate as well as evaluating the rate of transfer between the two phases. Conventionally, these rates are 
expressed as the products of kinetic constant such as mass transfer coefficient and the degree of departure from 
equilibrium which exist between the two phases. Elucidating the direction and the rate transfer of PAHs thus 
requires accurate values for the Henry’s constant [10].According to Henry’s law, the equilibrium ratio between the 
abundances in the gas phase and in the aqueous phase is constant for a dilute solution [11]. 
 
Henry’s law constant (HLC) is a measure of the concentration of a chemical in air over its concentration in water. A 
PAH with a high HLC will volatilize from water into air and be distributed over a large area. Chemicals with a low 
HLC tend to persist in water and may be adsorbed onto soil. The HLC value is an integral part in calculating the 
volatility of a chemical. 
 
Henry’s Law constant for a chemical is generally expressed in one of two ways [12]: 
 

��� = 
������	
�	���	��	���	�����
������	
�	���	��	������	�����          (1) 

 

��� =	 ������	�����
	�
����
���������	��������	�                                                                                            (2) 

 
Chemicals with a high HLC tend to volatilize from water and be distributed in the atmosphere. A chemical with a 
low HLC will tend to accumulate in water and soil, rather than volatilize. This can be an environmental concern 
since the accumulation of chemicals in water can have adverse effects upon living organisms [12]. 
 
As a result of the enormous number of chemicals of actual and potential concern, the difficulties and cost of 
experimentaldeterminations, and scientific interest in elucidating the fundamental molecular determinants of 
physical-chemicalproperties, considerable effort has been devoted to generating quantitative structure-property 
relationships (QSPRs) models. This concept is based on observations of linear free-energy relationships, and usually 
takes the form of a plot or regression of the property of interest as a function of an appropriate molecular descriptor 
which can be calculated using only a knowledge of molecular structure or a readily accessible molecular property 
[10]. 
 
The aim of this research is to build statistically robust quantitative structure property relationship models for 
predicting the Henry’s law constant of poly aromatic hydrocarbons. 
 

MATERIALS AND METHODS 
 
The compounds in the data set were optimized using SPARTAN’14 V1.1.0 molecular modelling software on H.P 
650 computer system (Intel Pentium), 2.43GHz processor, 4GB ram size on Microsoft windows 7 Ultimate 
operating system. The molecules were pre-optimized with the molecular mechanics procedure included in 
Spartan’14 V1.1.0 software and the resulting geometries were further refined by means of Semi-empirical (pm3) 
method. This is termed the “Cascade method” [13]. This method of geometry optimization was used because it is 
less computationally taxing by relegating initial geometry calculations to less computationally intensive (and 
possibly more inaccurate) method. 
 
Data set 
A data set comprising of series of 27PAHs with their experimental Henry’s law constant values (HLC) values 
expressed on a logarithmic scale as pHLCwere taken from literature [10]for this study. 20 PAHs were used as 
training set for building the models while the remaining 7 were used as test set for external validation of the most 
statistically significant QSPR model. The notation, structure, HLC and pHLC of the compounds are shown in Table 
1 below. 
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Table 1: PAHs with their Experimental HLC 
 

S/n Compound HLC pHLC 

 
 

C1 

 
Phenanthrene 

 
 
 
 

3.24 
 

0.51 

 
 

C2 

 

 
Pyrene 

 
 
 

0.919 

-0.04 

 
 

C3 

 

 
Acenaphthene 

 
 
 

12.17 

1.09 

 
 

C4 

 

 
Anthracene 

 
 

3.961 
0.6 

 
 

C5 

 

 
 

Benz[a]anthracene 

 
 

1.22 
0.09 

 
 

C6 

 

 
Benz[a]anthracene 

 
 
 

0.051 
 
 

-1.29 

 
 

C7 

 

Benzo[k]fluoranthene 

 
 

0.044 

-1.36 
 
 

 
 
 

C8 

 
Benzo[a]flourene 

 
 
 

2.70 

0.43 
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C9 

 

 
Flouranthene 

 
 

0.957 
-0.02 

 
 

C10 

 

 
Flourene 

 
 

7.87 
0.9 

 
 

C11 

 

 
1-methyl phenanthrene 

 
 

5.00 
0.7 

 
 

C12 

 

 
1-Methyl naphthalene 

 
 
 

44.89 

1.65 

 
 

C13 

 

 
Naphthalene 

 
 

43.00 
1.63 

 
 
 

C14 

 

 
1-Methyl naphthalene 

 
 
 

51.19 

1.71 

 
 
 
 

C15 

 

 
1,4-Dimethyl naphthalene 

 
 

31.11 
1.49 

 
 

C16 
 

 
62.49 

1.8 
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2,3-Dimethyl naphthalene 

 
 
 

C17 

 

 
1-ethyl naphthalene 

 
 
 

38.82 

1.59 

 
 

C18 

 

 
2-ethyl naphthalene 

 
 

78.11 
1.89 

 
 
 

C19 

 

 
1, 4, 5-Trimethyl naphthalene 

 
 
 

55.21 

1.74 

 
 
 

C20 

 

 
Indan 

 
 

232.8 
2.37 

 
 
 

C21 

 

 
Biphenyl 

 
 

28.64 
1.46 

 
 
 

C22 

 

 
Diphenylmethane 

 
 

0.93 
 

-0.032 

 
 
 

C23 

 

 

 
 

19.63 
1.29 
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Bibenzyl 

 
 
 

C24 

 

 
Trans-stilbene 

 
 
 

40.40 

1.61 

 
 

C25 

 

 
Acenaphthylene 

 
 
 

8.396 

0.92 

 
 

C26 

 

 
Acenaphthene 

 
 

12.17 
1.09 

 
 

C27 

 

 
9-Methyl-anthracene 

 
 

1.65 
0.22 

 
BUILDING OF QSPR MODEL 
Genetic function approximation (GFA) method in Material studio software was used in the building of the models. 
The experimentally determined HLCon logarithmic scale (pHLC) as the dependent variable and the computed 
descriptors as the independent variables. In generating the GFA optimum QSPR models, the number of descriptors 
in the regression equation was set to 5, and Population and Generation were set to 1,000 and 5,000, respectively. 
The number of top equations returned was 5. Mutation probability was 0.1, and the smoothing parameter was 0.5. 
The statistical significance of the generated models were assessed based on Friedman’s LOF and the optimum 
model was selected based on this parameter. 
 
In Materials Studio, LOF is measured using a slight variation of the original Friedman formula [14]. The revised 
formula is: 
 

LOF = SSE / (1 − ����
� )2          (3) 

 
Where SSE is the sum of squares of errors, c is the number of terms in the model, other than the constant term, d is a 
user-defined smoothing parameter, p is the total number of descriptors contained in all model terms (ignoring the 
constant term) and M is the number of samples in the training set. 
 
Model Validation 
Model validation was carried out in order to assess therobustness, fitting ability, stability, reliability and predictive 
ability of the developed models. The best GFA derived model obtained based on the model with the least lack of fit 
(LOF) score was subjected to both internal and external validation techniques and its validation parameters were 
compared with the minimum recommended standards for acceptable QSAR model shown in Table 2. 
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Internal validation was done using the data that created the model. The QSAR models were internally validated 
using the methods of least squares fit (R2), cross validation coefficient (Q2), adjusted R2(R2adj) and its confidence 
interval of all regression model at 95% significant level (α value). External validation on the other hand was 
performed on the basis of predictions of activities of molecules not used in the models using parameters as external 
test set’s coefficient of determination(R2

pred.)[14]. 
 
Internal validation parameters 
This validation is done using the data that created the model. The various internal validation parameters invoked in 
this study are presented thus; 
 
R2 (the square of the correlation coefficient):is the proportion of variability in a data set that is accounted for by a 
statistical model.It describes the fraction of the total variation attributed to the model. The closer the value of R2 is to 
1.0, the better the regression equation explains the Y variable. R2 is the most commonly used internal validation 
indicator and is expressed as follows: 
 

R2 = 1 - 
∑("���#"�
��)%

∑("���#"	
������)%           (4) 

 
Where, Yobs; Ypred; Ytraining are the experimental property, the predicted property and the mean experimental 
property of the samples in the training set, respectively [15]. 
 
Adjusted R2 (R2

adj):is a modification of R-square that adjusts for the number of terms in a model. R-square always 
increases when a new term is added to a model, but adjusted R-square increases only if the new term improves the 
model more than would be expected by chance.The adjusted R2 is defined as: 
 

R2
adj = 1- (1 − &') �#(

�#�#( = 
(�#())%#*
�#��(         (5) 

 
Where p = number of independent variables in the model [16]. 
 
Q2 (Leave one out cross validation coefficient): The LOO cross validated coefficient (Q2) is given by;  
 

Q2 = 1 - 
∑("�#")%
∑("#"�)%           (6) 

 
Where Yp and Y represent the predicted and observed activity respectively of the training set and Ymthe mean 
activity value of the training set[16]. 
. 
Variance Ratio (F): this parameter is used to judge the overall significance of the regression coefficient. It is the 
ratio of regression mean square to deviations mean square defined as: 
 

F =     

∑("���#"�)%
� ∑("���#"���)

+#*#(
',           (7) 

WhereYobs stands for the observed response value, while Ycalc isthe model-derived calculated response and Ymis the 
average of the observed response values.The F value has two degrees of freedom: p, N − p − 1. The computed F 
value ofa model should be significant at p < 0.05. A high F value is an indication that the regression coefficients are 
significant [17]. 
 
Standard error of estimate (s): Low standard error of estimate is an indication of a good model. It is defined as 
follows: 

S = √
("���#"���)%

+#*#(              (8) 

 
Its degree of freedom is N-p-1 [18]. 
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Leave one out cross validation (LOOCV): in this cross validation approach, the model is repeatedly refit leaving 
out a single observation and then used to derive a prediction for the left-out observation.  For the model to have an 
excellent prediction ability, Q2 must be ˃ 0.5 andR2 – Q2 value should not exceed 0.3. The equation for CV is: 
 

Q2 = 1 − *)-..
∑("�#"�)%           (9) 

 
PRESS = ∑	(/0123, 5 − /5)         (10) 
 
Q2 = LOOCV cross validation coefficient, R2 = coefficient of determination. 
 /5is the data value(s) not used to construct the CV model, PRESS is the predictive residual sum of the squares, /6 
= mean of the experimental bioactivity (pMIC), /0123, 5 is the predicted /5[15]. 
 
Metrics for external validation  
External validation of QSAR model is performed in order to ensure the predictability and applicability of the 
developed QSAR model for the prediction of untested molecules. The various external validation metrics used in 
this work are highlighted thus: 
 
Predictive R2 (R2

 pred.):R
2 pred. is termed the predictive R2 of a development model and is an important parameter 

that is used to test the external predictive ability of a QSAR model. The predicted R2 value is calculated as follows; 
 

R2
pred. =1 – 

∑["���(	��	)#"�
��(	��	)]%
∑["���(	��	)#"�(	
������)]%         (11) 

 
Ypred(test) and Yobs(test) indicate predicted and observed activity values respectively of the test set compounds and 
Ym(training) indicates mean activity value of the training set [15]. 
 
Golbraikh and Tropsha’s criteria: according to Golbraikh and Tropsha, models are considered satisfactory, if all 
the following conditions are met. 
 
(a) R2

test˃  0.5 
(b) (R2 – R0

2 / R2 ) ˂ 0.1 
(c) (R2 – R’

0
2 / R2 ) ˂ 0.1 

(d) 0.85 ≤ k ≤ 1.15 
(e) 0.85 ≤ k’ ≤ 1.15 
 
Parameters R2 and R0

2 are the squared correlation coefficients between the observed and predicted values of the 
compounds with and without intercept, respectively. The parameter R’0

2bears the same meaning with R0
2but uses the 

reversed axes. K is the intercept of the plot of the observed and predicted values of the compounds and K’ the 
reversed axes intercept [18]. 

 
Table 2: Validation metrics for a generally acceptable QSAR model 

 
S/n Metric symbol Name Threshold 
1 R2 Coefficient of determination ≥ 0.6 
2 Q2 LOO  cross validation coefficient ˃ 0.5 
3 R2

pred. External test set’s coefficient of determination ≥ 0.6 
4 R2 - Q2 Difference between R2 and Q2 ≤ 0.3 
5 F value Variation ratio High 
6 r2 – r02 / r2 Golbraikh and Tropsha condition ˂ 0.1 
7 r2 – r’02 / r2 Golbraikh and Tropsha condition ˂ 0.1 
8 K and K’  Intercept 0.85 ≤ k or k’ ≤ 1.15 

Source: Roy et al.; Ravinchandranet al.; Golbraikh and Tropsha 
 
QSAR Study Results and Discussion 
The best performing QSAR models for predicting the Henry’s law constant of PAHs are represented by models 1, 2, 
3, 4 and 5. The models, their internal validation parameters and detailed definition of the descriptors in the 
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modelsare shown in Tables 3, 4 and 5 respectively. Based on the model with the least LOF score and best statistical 
significance, model 1 was chosen as the optimization model for predicting the HLC of PAHs. 
 

Table 3: GFA derived QSPR models for the pHLC of PAHs 
 

Model Equation Definition of terms 

 
 
 

1. 

 0���	 = 		0.212788074	 ∗ 	@36 − 0.186230525	 ∗ 	@611		 − 	0.089014980	 ∗ 	@686	 + 0.250943018	∗ 	@748	 − 	0.002217301	 ∗ 	@771	 − 	0.290285405	 ∗ 	@803 − 	1.202739805	∗ 	@839	 + 	2.258788057	

X36 :   BCUTp-1l 
X611 :  ETA_Beta_ns 
X686 :  nFRing 
X748 :  topoDiameter 
X771 :  DPSA-2 
X803 :  LOBMIN 
X839 :  WD.mass 

 
2. 

 0���	 = 		0.193503331	 ∗ 	@36	 − 	0.136428149	 ∗ 	@47 − 	0.086104163	 ∗ 	@686	 + 	0.226182560	∗ 	@748	 − 	0.002550314	 ∗ 	@771	 − 	0.308283129	 ∗ 	@803	 − 	1.142537556	∗ 	@839	 + 	2.215240549	

X36 :  BCUTp-1l 
X47 :  nBondsM 
X686 :  nFRing 
X748 :  topoDiameter 
X771 :  DPSA-2 
X803 :  LOBMIN 
X839 :  WD.mass 

 
3. 
 
 

 0���	 = 		−	0.136428149	 ∗ 	@7	 + 																			0.193503331	 ∗ 	@36 − 	0.086104163	 ∗ 																		@686	+ 	0.226182560	 ∗ 	@748		 − 																		0.002550314	 ∗ 	@771	 − 	0.308283129	∗ 																	@803	 − 	1.142537556	 ∗ 	@839	 + 																		2.215240549	

X7 :  nAromBond 
X36 :  BCUTp-1l 
X686 : nFRing 
X748 :  topoDiameter 
X771 :  DPSA-2 
X803 :  LOBMIN 
X839 :  WD.mass 

 
4. 
 

 0��� = 		0.260929211	 ∗ 	@36	 − 	0.202419232	 ∗ 																			@611			 − 	0.095435731	 ∗ 	@686	+ 																		0.226364818	 ∗ 	@748	 − 	0.019758863	 ∗ 																	@772		− 	0.287694041	 ∗ 	@803	 − 																1.226705548	 ∗ 	@839	 − 	0.047663266	∗ 																@841		 + 	2.290859517	

X36 : AS : BCUTp-1l 
X611 : WW : 
ETA_Beta_ns 
X686 : ZT : nFRing 
X748 : ACD : 
topoDiameter 
X772 : ADB : DPSA-3 
X803 : AEG : 
LOBMIN 
X839 : AFQ : 
WD.mass 
X841 : AFS : 
Wlambda2.volume 

 
5. 

 0��� =		−	0.153603875	 ∗ 	@7	 + 																	0.244607053	 ∗ 	@36	 − 	0.091109132	 ∗ 																@686	+ 	0.198559583	 ∗ 	@748	 − 																	0.021832375	 ∗ 	@772	 − 	0.308995886	∗ 																		@803	 − 	1.158389036	 ∗ 	@839	 − 																		0.055049268	 ∗ 	@841		+ 	2.258707794	

X7 : J : nAromBond 
X36 : AS : BCUTp-1l 
X686 : ZT : nFRing 
X748 : ACD : 
topoDiameter 
X772 : ADB : DPSA-3 
X803 : AEG : 
LOBMIN 
X839 : AFQ : 
WD.mass 
X841 : AFS : 
Wlambda2.volume 

 
Table 4: Validation Parameters of the models 

 
S/n Parameters Model 1 Model 2 Model 3 Model 4 Model 5 
1 Friedman LOF 0.016 0.017 0.017 0.017 0.018 
2 R-squared 0.996 0.996 0.996 0.997 0.997 
3 Adjusted R-squared 0.994 0.994 0.994 0.995 0.995 
4 Cross validated R-squared 0.989 0.988 0.988 0.993 0.992 
5 Significant Regression Yes Yes Yes Yes Yes 
6 Significance-of-regression F-value 464.238 445.326 445.326 486.361 475.867 
7 Critical SOR F-value (95%) 2.919 2.919 2.919 2.953 2.953 
8 Replicate points 0 0 0 0 0 
9 Computed experimental error 0 0 0 0 0 
10 Min expt. error for non-significant LOF (95%) 0.059 0.060 0.060 0.053 0.054 

 
 



John Philip Ameji et al                             J. Comput. Methods Mol. Des., 2015, 5 (4):129-141  
______________________________________________________________________________ 

138 
Available online at www.scholarsresearchlibrary.com 

Table 5: Detailed definition of descriptors 
 

S/n Descriptor symbol Definition 
1 nAromBond Number of aromatic bonds 
2 BCUTp-1l nhigh lowest polarizability weighted BCUTS 
3 nBondsM Total number of bonds that have bond order greater than one 
4 ETA_Beta_ns A measure of electron-richness of the molecule 
5 LOBMIN The L/B ratio for the rotation that results in the minimum area 
6 nFRing Number of fused rings 
7 topoDiameter Topological diameter (maximum atom eccentricity) 
8 DPSA-2 Difference of FPSA-2 and PNSA-2 
9 Wlambda2.volume Directional WHIM, weighted by van der Waals volumes 
10 WD.mass Non-directional WHIM, weighted by atomic masses 

 
Where PNSA-2 = Partial negative surface area * total negative charge on the molecule 
            FPSA-2 = PPSA-2 / total molecular surface area 
            PPSA-2 = Partial positive surface area * total positive charge on the molecule 
 
 

. 
 

Figure 1:Plot of actual pHLC against predicted pHLC 
 

. 
 

Figure 2: Residual plot of model 1 
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Table 6: Comparison of Yobs (training) and Ypred.(training) of model 1 
 

Compound Yobs Ypred Residual 
C1 0.510 0.545 -0.035 
C2 -0.040 -0.023 -0.017 
C3 1.090 1.078 0.012 
C4 0.600 0.662 -0.062 
C5 0.090 0.042 0.048 
C6 -1.290 -1.191 -0.099 
C7 -1.360 -1.456 0.096 
C8 0.430 0.371 0.059 
C9 -0.020 -0.042 0.022 
C10 0.900 0.926 -0.026 
C11 0.700 0.792 -0.092 
C12 1.650 1.546 0.104 
C13 1.630 1.629 0.001 
C14 1.710 1.676 0.034 
C15 1.490 1.512 -0.022 
C16 1.800 1.788 0.012 
C17 1.590 1.713 -0.123 
C18 1.890 1.833 0.057 
C19 1.740 1.690 0.050 
C20 2.370 2.388 -0.018 

 
Table 7: External validation of Model 1 

 

Test cpd Yobs BCUTp-1l ETA_Beta_ns nFRing 
Topo 

Diameter 
DPSA-2 LOBMIN WD.mass 

C21 1.255 6.823 6 1 4 103.44 1.172 0.457 
C22 1.415 6.637 12 0 7 122.84 2.375 0.579 
C23 1.362 6.597 12 0 8 159.21 1.762 0.547 
C24 1.623 6.577 12 0 9 197.88 2.395 0.675 
C25 1.204 6.598 13.5 0 9 193.11 2.113 0.599 
C26 1.322 7.363 11.5 4 5 120.112 2.55 0.612 
C27 1.362 7.321 10 4 5 119.75 2.781 0.449 

 
 

Test comp. Ypred Ym (Yobs-Ypred)2 (Yobs-Ym)2 
C21 1.885448 0.874 0.397465 0.145161 
C22 1.566714 0.874 0.023017 0.292681 
C23 1.41137 0.874 0.002437 0.238144 
C24 1.640206 0.874 0.000296 0.561001 
C25 1.223617 0.874 0.000385 0.1089 
C26 1.329702 0.874 5.93E-05 0.200704 
C27 1.271236 0.874 0.008238 0.238144 

   ∑ = 0.431898 ∑= 1.784735 
 

But from equation 11, R2pred. =1 – 
∑["���(	��	)#"�
��(	��	)]%
∑["���(	��	)#"�(	
������)]% 

Thus, R2
pred. = 1 – (

F.GH'
(.IJK) = 0.758 

 
Table 8: Euclidean based applicability domain for test set compounds 

 
Test cpd. Distance Score Mean Distance Normalized Mean Distance 
C21 3033.555 151.678 1 
C22 2683.448 134.172 0.792 
C23 2045.954 102.298 0.414 
C24 1583.16 79.158 0.139 
C25 1626.526 81.326 0.165 
C26 2732.134 136.607 0.821 
C27 2738.535 136.927 0.825 
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Table 9: Euclidean based applicability domain for training set compounds 
 

Training set cpd Distance Score Mean Distance Normalized Mean Distance 
C1 1409.442 70.472 0.036 
C2 1374.093 68.705 0.015 
C3 1617.893 80.895 0.159 
C4 1527.582 76.379 0.106 
C5 2719.743 135.987 0.814 
C6 2363.332 118.167 0.602 
C7 2565.25 128.262 0.722 
C8 1887.493 94.375 0.32 
C9 1447.933 72.397 0.058 
C10 1349.493 67.475 0 
C11 1589.849 79.492 0.143 
C12 1425.134 71.257 0.045 
C13 1521.999 76.1 0.102 
C14 1405.68 70.284 0.033 
C15 1358.475 67.924 0.005 
C16 2080.396 104.02 0.434 
C17 1820.706 91.035 0.28 
C18 2112.537 105.627 0.453 
C19 1660.846 83.042 0.185 
C20 3033.372 151.669 1 

 
Table 10: Golbraikh and Tropsha External Validation Parameters for the Optimum Model 

 
s/n parameter value 
1 r2 0.9963 
2 r’02 0.9963 
3 r02 0.9963 
4 k 0.9979 
5 K’  1 

 
Based on the parameters above; 

r2 – r0
2 / r2 = 

F.LLMH#F.LLMH
F.LLMH = 0.000 

r2 – r’0
2 / r2 = 

F.LLMH#F.LLMH
F.LLMH = 0.000 

 
The five Genetic Function Approximation derived QSPR models are presented in Table 3. The validation 
parameters and detailed definition of the descriptors used in the models are presented in Tables 4 and 5 respectively. 
Based on the model with the least LOF score and best statistical significance, the hepta-parametric model (model 1) 
was selected as the optimization model for predicting the Henry’s law constant of polyaromatic hydrocarbons. The 
validation parameters of the QSPR model is good agreement with the minimum standard shown in Table 2 as its R2 
= 0.996, R2

adj = 0.994, Q2 = 0.989,R2
pred. = 0.758.The results in Table 10 also shows that Golbraikh and Tropsha 

criteria for robust QSPR model were also met.  
 
The residual values of a QSPR model is the difference between the experimental or observed value and the predicted 
value by the model, the excellent predictability of model 1is evidenced by the low residual values observed in Table 
6 which gives the comparison of observed and predicted pHLC of the molecules. Also, the plot of predictedpHLC 
against observed pHLC shown in Figure 1 indicates that the model is well trained and it predicts well the pHLC of 
the compounds. Furthermore, the plot of observed pHLC versus residual pHLC (Figure 2) indicates that there was 
no systemic error in model development as the propagation of residuals was observed on both sides of zero [19]. 
 
Applicability domain (AD) is the physicochemical, structural or biological space, knowledge or information on 
which the training set of the model has been developed. The resulting model can be reliably applicable for only 
those compounds which are inside this domain.It is based on distance scores calculated by the Euclideandistance 
norms. At first, normalized mean distance score for training set compounds are calculated and these values ranges 
from 0 to 1(0=least diverse, 1=most diverse training set compound). Then normalized mean distance score for test 
set are calculated, and those test compounds with score outside 0 to 1 range are said to be outside the applicability 
domain [20]. 
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The applicability domain of the optimization model (model 1) was also defined for test set (Table 8) and training set 
(Table 9) compounds using Euclidean based approach. The results showed that all the compounds fall within the 
applicability domain of the model as their normalized mean distance score fall within the range of 0 and 1. 
 

CONCLUSION 
 

A highly predictive Quantitative Structure Property Relationship model was generated for the Henry’s law constant 
of poly aromatic hydrocarbons.  The molecular descriptors; BCUTp-1l, ETA_Beta_ns, nFRing, topoDiameter, 
DPSA-2, LOBMIN, WD.mass were found to have profound influence on the predictive ability of the optimization 
model. The robustness, applicability, and reliability of the optimum QSPR model has been established by various 
validation techniques. It is envisioned that the model will found excellent application in the prediction of Henry’s 
law constant of poly aromatic hydrocarbons that fall within its applicability domain. 
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