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ABSTRACT

An attempt has been made for the development oftitatéve structure-activity relationship (QSAR) dets for a
series ofg-carboline derivatives having DYRK1A (dual spettifityrosine phosphorylated and regulated kinasg la
inhibitory activities as potent anticancer agerasvard the activation of caspase-9 which leads tgsive apoptosis
in different human cancer cell types including gim esophageal cancer and non-small-cell lung cence
respectively. A number of highly descriptive anddictive QSAR models for these compounds werenelotdiy
considering in vitro anticancer activities againgtioma cell lines including U373 and Hs683 respealy with
various sets of theoretical molecular descriptorgliiding topological, constitutional, geometricdynctional
groups and atom centered fragment indices calcdlaelely from the structures of 48 synthesizédarboline
derivatives using stepwise-multiple linear regreasi methods. Model validation is performed by ipooating
training and test sets approach and calculatirfg @ o2, R)redz and standard error of estimation (SEE) respectivel
From these models a number of significant featufethese congeners including X3Av, EEig13x, MAT8Ath
SPO05 which are responsible for size, shape andhwveaifthe molecules whereas EEig03d, MATS4p andpQYY
which indicate dipole moment, polarizabilities, payation and aromaticity have been predicted fog tresign of
more promisings-carboline anticancer compounds.

Keywords. B-carboline compounds, DYRK1A inhibitors, computealecular descriptors, topological indices,
Multiple linear regression analysis, QSAR, Anticandrug design.

INTRODUCTION

Cancer is characterized by the malignant tumors matignant neoplasm which may be defined as abrprma
excessive, uncoordinated, and autonomous proliéeraif cells even after cessation of stimulus foovgh which
caused it.Malignancies is developing as the mostneon cause of increasing death rate in the worldang the
demand an extensive research in cancer biologychathotherapy, both in revealing pathobiology of diseases
and discovery of new leads [1]. The main toxicifyttee cancer chemotherapeutics is to kill norméksadong with
the cancer infected cells. Thus scientists are mmse concentrating about the design and discovepotential
anticancer leads which may cause stimulation gb@ses-mediated apoptosis process without toxicitkilbhg the
normal cells [2-5]. The major mechanism is to achi¢hese less toxic anticancer activities by depialp phyto
active constituents. One of the important phytotitments useful for the purpose to overcome theinsic
resistance of cancer cells to apoptotic stimulpisarbolines that are structurally related to haemiwhich is a
naturally occurring and previously isolated fronamk, including the Middle Eastern grass harmabymian rue
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(Peganumharmala) and the South American vine agahu@anisteriopsiscaapi). A lot of attention hasrbpaid
for the development @fcarboline derivativesfor its potential anticaneetivities. The biochemical mechanisms of
these compounds are DNA intercalation and inhibitdddual specificity tyrosine phosphorylated andulated
kinase 1la(DYRK1A), an enzyme involved in uncongdlkell proliferation and cancer cell chemoresistathat is
overexpressed in melanomas intrinsically residgiaajpoptotic stimuli. DYRK1A is a dual-specificiprotein kinase
that auto phosphorylates a conserved tyrosineuesidthe activation loop but phosphorylates exogersubstrates
only at serine or threonine residues[6].DYRK1A hitiobn induces the activation of caspase-9 whichd$eto
massive apoptosis in different human cancer cpédyincluding glioma, esophageal cancer and notl-seiblung
cancerswhich are among the cancers associatedhgitlvorstprognoses because of their ability tostembst if not
all of thecurrent chemotherapies [7-9].The molecufeechanism of harmine compounds have been exployed
Seifert et al. [10] who identifiedthat the cysteimspartyl protease caspase-9, a critical compawietite intrinsic
apoptotic pathway, as a substrate of DYRK1A. As their observation, depletion of DYRK1A from humeglls
by short interfering RNA inhibits the basal phospiation of caspase-9 at an inhibitory site, ThrlP&¥RK1A
dependent phosphorylation of Thrl125 is also blodketiarmine, confirming the use of tifiscarboline alkaloid as
a potent inhibitor of DYRK1A in cells[11].Caoet synthesized several seriespearboline derivatives considering
the starting material as L-Tryptophan on the basisharminenucleus.In-vitro cytotoxic activities dfiese
compounds were investigated. The results were shbahon the introduction of benzyl substituentpasition
2,anti-tumor activities of these compounds wereeased, along with the acute toxicity. Substitutafnethoxy
carbonyl amino at position 3 reduced the acutectyxas well as anti-tumor activity. Toxicity wasduced after the
introduction of appropriate substituent at posit®rand 9 [12-13].In the study of Ma et al.[14], tnime was
identified in a screening program as a novel breemtcer resistance protein(BCRP) reversal agent. It
inhibitedBCRP-mediated drug efflux and increasesl ditotoxicity of anticancer drugs in a BRCP overessing
breast cancer cell line MDA-MB-231.Ishida et al5]T¥eported thatharmine arfidcarboline analogues exhibited
significantactivities against several human tumali ines includingthree drug-resistant KB sublingith various
resistancemechanisms, ane(4-nitrobenzylidine)-harmine had a broadcytotoxicspectrum against 1A9, KB,
Sa0S-2, A549, SKMEL-2, U-87-MG and MCF-7 cell limespectively.

A number of 48 novep-carbolines structurally related to harmine haverbeynthesized by Frederick et al. and
evaluated the in vitro anticancer activities ofstneompounds against different types of glioma esmphageal
cancer cell lines including Hs683 oligodendrogliooad line (ATCC code HTB-138) and the U373 (ECACale
89081403).As per their observations, thesmrbolines cause sensitization to the apoptaticuditand produce less
intrinsic resistance to the cancer infected cellacure activity relationships showed that lipdjgiity is one of the
criteria for producing anticancer activity of thesengeners[16].But there is hardly anyspecific QSmBdeling
based on large number of computed structural deecsi calculated solely from the structureg-carboline
derivatives utilized as potent anti-cancer ageefsorted yet. Thus, an attempt has been made torpeithe
quantitative structure-activity relationship stuglief these derivatives utilizing theoretical molecudescriptors
computed from the structure of these compoundsxpboee the essential structural requirements tagiemore
potent active8-carbolinecongeners having more effective treatragatnst various cancer cell lines.

MATERIALSAND METHODS

Biological activity data

A number of 483-carboline compounds having promising anticancévidies have been considered in the present
study. These compounds were synthesized by Frédetril. [16]. Table 1 contains structural substitiialong with
biological activities of 48 compounds. In vitro maincer activities of these compounds have beersuned in
terms of 1G, against various glioma cell lines such as U378, 148683 respectively.Harmine structure contgins
carboline nucleus, also known as norharmane whichnitrogen containing heterocycfecarboline consist of an
indole ring fused with a pyridine ring having var® aromatic and aliphatic substituents such a&,Rand
Rarespectively to be substituted in the parent nicteuproduce a large number of compounds showherTable
1.These compounds have been considered in thenprasiele for computation of molecular structugimization
and calculation of theoretical molecular descrigptorcluding topological, constitutional, geomettjctunctional
group and atom fragment descriptors. The calculatelbcular descriptors are then used to develop R8wdels
derived from application of statistical tools cdatérg anticancer activities df-carbolines and various structural
invariants.
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Table1: Biological activity data of g-caboline compounds

AN
-t
R,0 N = \R3
F|z2 CHy
Compound R R R -log 1G5 | -log I1Cso
number ! 2 s U373 | HsS683
1 CH; H - -1.505 -1.568
2 CH,CH=CH, H - -1.505 -1.447
3 CH,CH(CHs), H - -1.38( -1.361
4 (CH,)-OCH; H - 1.80¢ | -1.72¢
5 (CHy),-OH H - 1623 | -1612
6 (CH,)-cyclohexyl H - -0.875 -1.342
7 CH,-CgHs H - -0.968 -1.230
8 (CHb)2-CoHs H - 0.959 | -1.322
9 CO-CgHs H - -1.4%0 -1.72¢
10 CH,-2 -pyridyl H - -1.322 -1.301
11 CH,-3 -pyridyl H - -1.380 -1.477
12 CH-4 -pyridyl H - -0.397 -0.908
13 CH-napthyl H - -0.869 -1.278
14 H CH,-CsHs - -1.903 -1.897
15 CH-CsHs CH,-CgHs - -1.255 -1.518
16 3 -fluorobenzy 3 -fluorobenzy - 0.397 -1.25¢
17 4 -fluorobenzyl 4fluorobenzyl - -1.477 -1.230
18 CH-cyclohexyl CH-cyclohexyl - -1.491 -1.477
19 (CH)2-CH(CHs), | (CHR)>-CH(CHg)o - -1.518 -1.477
20 CH-CoHs (CH2)2CHs - 1419 | -1.113
21 CH,-CgHs H CH-C¢Hs -0.591 -0.556
22 CH-CsHs CH,-CgHs CH,-CgHs 0.356 0.301
23 CH-CsHs CH,-CgHs 2-fluorobenzyl 0.301 0.356
24 CH-CsHs CH,-CgHs 4florobenzyl 0.221 -0.204
25 CH,-CgHs CH,-CgHs (CH,)-CsHs -0.301 -0.361
26 CH-CsHs CH,-CgHs (CH,),CHs -0.397 0.221
27 CH-CsHs CH,-CgHs (CH,),CHs -0.154 0.221
28 CHy-CeHs CHy-CeHs (CH)CH(CHs). | -0.408 | -0.4318
29 Chy-CoHs CHx-CoHs (CH,);0OH 0.954 | -1.491
30 3-fluorobenzyl 3fluorobenzyl CH-CsHs 0.096 -0.447
31 3-fluorobenzyl 3fluorobenzyl 2fluorobenzyl 0.221 -0.342
37 3-fluorobenzyl 3fluorobenzyl 4fluorobenzyl -0.045 -0.653
33 4fluorobenzyl 4fluorobenzyl CH-CsHs 0.366 0.0457
34 4fluorobenzyl 4fluorobenzyl 2fluorobenzyl 0.301 -0.079
35 4-fluorobenzyl 4fluorobenzyl 4fluorobenzyl -0.462 -1.113
36 CH,-cyclohexyl CH-cyclohexyl CH-CgHs 0.431 -0.420
37 CH-cyclohexyl CH-cyclohexyl 2fluorobenzyl 0.146 0.602
38 CHg-cyclohexyl CH-cyclohexyl 4fluorobenzyl 1.397 -0.491
39 (CH)CH(CHs)z | (CH2)2-CH(CHy)z (CHo).0H 0.397 | -0.602
40 (CH2)2-CH(CHs)2 | (CH2)2~-CH(CHy)2 | (CH2)2~-CH(CHy), | 0.657 0.585
41 (CH)-CH(CHy)2 | (CH,)-CH(CHy)z CHz-CoHs 0.530 | -0.490
42 CH-CsHs (CH,),CH; CH,-CgHs 0.387 -0.414
43 CH-CsHs (CH,),CH, 2-fluorobenzyl 0.408 0.346
44 CH-CsHs (CH,).CH; 4fluorobenzy 0.05¢ -0.491]
45 (CH2)2-CH(CHs)2 | (CH2)2CH(CHy), CHz-CeHs 0.420 0.327
46 CH-cyclohexyl CH-cyclohexyl (CH),OH -0.230 -0.579
47 CHg-cyclohexyl CH-cyclohexyl | (CH),CH(CHa). 0.397 0.376
48 CH-cyclohexyl CH-cyclohexyl (CH),-CeHs 0.698 0.508

*Test set compounds
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Computation

Structure optimization: All the structures of 4§-carboline compounds were drawn using 2D Chemdiidve.
drawn structures were then converted into 3D madaled the geometries of all compounds were fullyndped
using MM2 force field considering the default corsien procedure implemented in Chem3D Ultra [17].

Calculation of theoretical molecular descriptors.Theoretical molecular descriptors are the numerical
representation of molecule, achieved by applyirgghinciples of graph theory to molecular structuteencodes
molecular architecture and quantifies such aspefttsiolecular structure as size, shape, symmetrgpéexity,
branching, cyclicity, stereoelectronic charactdc,.®tructural descriptors can be categorized asipbghemical,
constitutional and geometrical (3D), electrostatizjctional and atom-centered and topological retpaly. The
physicochemical descriptors include AlogP98 vala®R value, buffer solubility, polarizability, vapadensity,
water solubility, solvation free energy, and saHoiThe constitutional descriptors consist of molac descriptors
such as molecular mass, molecular formula, formatges, fraction of rotatable bonds, and numbeigaf bonds,
rings, charged groups, and so forth. The three-déio@al or shape descriptors (3D) are more com@egpding
information about the three-dimensional aspectsnofecular structure. The electrostatic descriptwastitute
charged polarization, polarity parameter,local éBgndex, maximum positive charged, maximum negativarged,
total absolute atomic charge, total negative chatgf@l positive charge, and so forth. The funaiogroup and
atom centered descriptors represent the contribubib different functional groups and atoms uponldgaal
activity of the compounds whereas topological dpsars are the largest set of molecular descripsord may be
subdivided into two classes: topostructural andodtyemical descriptors. Topostructural descriptonsode
information strictly on the neighborhood and corivéty of atoms within the molecule, while the tageemical
descriptors encode information related to bothttpmlogy of the molecule and the chemical naturatofns and
bonds within it [18-22].

In the present work a total number of 898 topolabidescriptors, useful for our purpose, were caked via
DRAGON software [23], and before model developmeahgse were reduced to 415. The reduction in the
descriptors was due to keeping a constant valueofonearly all, of the compounds, and for thosa terfectly
correlated I( = 1.0) with other descriptors. The reduced setsladcriptors were then treated by multiple linear
regressions (MLR) algorithm for developing QSAR ralzd Table 2 represents different classes of médecu
descriptors along with their symbols.

Table 2: Computed Theoretical Molecular descriptorsused in thisstudy

Descriptor classes Descriptor names

First Zagreb index (ZM1),first Zagreb index by vate vertex degrees(ZM1V), second Zagreb index(ZM&agonc
Zagreb index by valence vertex degrees(ZM2V), caigdlrindex(Qindex),Narumi simple topological index (lc
function)(SNar), Narumi harmonic topological indei{ar), Narumi geometric topological index (GNaotal structur
connectivity index(Xt), Pogliani index (Dz), Pogliaindex (Ram), polarity number(Polpg of product of row sum
(PRS), log of product of row sums (LPRS),( VDA),mesquare distance index (MSCH¢hultz Molecular Topologic
Index (SMTI), Schultz Molecular Topological Indey balence vertex degrees(SMTI@ytman Molecular Topologic
Index (GMTI),Gutman Molecular Topological Index bglence vertex degrees (GMTIV),Xu index(Xayperpendent
index (SPI),W,WA, Har,Har2, quasi-Wiener index (Kihoff number) from Laplace matrix (QWirst Mohar index fron
Laplace matrix(Tl11), second Mohar index from Laplanatrix(T12),spanning tree number (log function) from Lapl
matrix (STN),HyDp,RHyDp, Wiener-like index from tolpgical distance matrix (w),ww,Rww, Wiener-likedex fronm
distance/detour matrix (D/D), all-path Wiener indéWap),WhetZ,Whetv, Whete,Whetp,J,JhetZ,Jhetv, JBiedep,
maximal electrotopological negative variation (MAKIR maximal electrotopological positive variatioMAXDP),
molecular electrotopological variation (DELS), st topological parameter (TIE), Kier symmetry nd80K), 1path
Kier alpha-modified shape index (S1K), 2-path Kigha-modified shape index (S2K), 3-path Kier alpihadified shap
index (S3K), Kier flexibility index (PHI), Kier berene-likeliness index (BLI), path/walk 2 - Randimape index(PW2),
path/walk 3 - Randic shape index(PW3), path/walk &Randic shape index(PW4), path/walk 5Randic shap
index(PW5), 2D Petitiean shape index(PJI2), ecieotmnectivity index (CSl), eccentricity (ECC),eage eccentricity
(AECC), eccentric (DECC), mean distance degree atiewvi (MDDD),unipolarity (UNIP), centralization(CHN,
variation (VAR),Balaban centric index (BAC), loppir(Lop), radial centric information index (ICR),Di5, sum of
topological distances between N..O(T(N..O)),suntagological distances between N..S(T(N..S)m of topologice
distances between 0O..0(T(0O..0)), sum of topologitistances between O..S(T(O..Sjjplecular walk count of order
(MWCO02), molecular walk count of order 3( MWCO03), molecular watbunt of order 4(MWCO04), molecular walk co
of order 5(MWCO05), molecular walk count of ordeM&/C06), molecular walk count of order 7(MWCO07), mollai
walk count of order 8(MWCO08), molecular walk cowftorder 10(MWC10), total walk coun(TWC), SRWOZE|fs
returning walk count of order 2(SRWO02), self-refagwwalk count of order 4(SRWO04), sefturning walk count of ord
6(SRWO06), self-returning walk count of order 7(SRR)/Gself-returning walk count of order 8(SRWO08)If-geturning
walk count of order 10(SRW10), molecular path canindrder 2 (Gordorgcantlebury index)( MPCO02), molecular g

Topological
Descriptors
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Descriptor classes

Constitutional
Descriptors

Descriptor names

count of order 3(MPCO03), molecular path countrafeo 4(MPCO04), molecular path count of order 5(MBCfolecula
path count of order 6(MPCO06), molecular path coofmbrder 7(MPCO07), molecular path count of ordekBCO08)
molecular path count of order 9(MPCO09), moleculathpcount of order 10(MPC10), molecular multiplehpeount o
order 1(piPCO01), moledar multiple path count of order 2(piPC02), molacumultiple path count of order3 (piPC03;
molecular multiple path count of order 4(piPC04 ecollar multiple path count of order 4), moleculartiple path cour
of order 5(piPCO05), molecular multiptath count of order 6(piPC06), molecular multipé&hpcount of order 7(piPCO’
molecular multiple path count of order 8(piPCO8plecular multiple path count of order 9(piPCO9)plecular multiple
path count of order 10(piPC10), total path coun&),Ronventional bond order ID number(pilD), ratio ofiltiple patt
count over path coun(PCR), difference between pilaltpath count and path count(PCD),Randic ID nu(@i&),
Balaban ID number(BID), connectivity index of ord¥iX0), connectivity index of mler 1 (Randic connectivity inde:
X1), connectivity index of order 2(X2), connectivindex of order 3(X3), connectivity index of ordgX4), connectivit
index of order 5(X5), average connectivity indexoofler 0(X0A), average connectivity index afier 1(X1A), averag
connectivity index of order 2(X2A), average conmgtt index of order 3(X3A), valence connectivitpdex of orde
0(X0v), valence connectivity index of order 1(X1vglence connectivity index of order 2(X2v), valenonnectivity
index of order 3(X3v), valence connectivity indexasfier 4(X4v), valence connectivity index of ordéK5v), averag
valence connectivity index of order 0(X0Av), avezagalence connectivity index of order 1(X1Av), aage valenc
connectivity index of orer 2(X2Av), average valence connectivity index afer 3(X3Av), average valence connecti
index of order 4(X4Av), solvation connectivity indef order 0(X0sol), solvation connectivity indek arder 1(X1sol)
solvation connectivity index of order 2(¥@l), solvation connectivity index of order 3(X3sdaolvation connectivit
index of order 4(X4sol), solvation connectivity @&d of order 5(X5sol), modified Randic index(XMODkciproca
distance sum Randic-like index(RDCHI), reciprodatahce sum inverse Randike index(RDSQ), information index «
molecular size(ISIZ), x total information index atomic composition(IAC), mean information contentthe distanc
equalit(IDE), x mean information content on thetalice magnitude(IDM mean informati@ontent on the distan
magnitude), mean information content on the distasiegree equality(iDDE), mean information contamthe distanc

degree magnitude(IDDM), total information contemt the distance equality(IDET), total informationnéent on the

distance magnitude(IDMT), mean information con@mthe vertex degree equality(IVDE), mean informattontent o
the vertex degree magnitude(lVDM), graph vertex plaxity index(HVcpx), graph distance complexity éxd(log
function)( HDcpx), Balaban Undex(Uindex), Balaban V index(Vindex), Balaban Kdéx(Xindex), Balaban

index(Yindex), Information Content index (neighbood symmetry of @rder)( ICO), Total Information Content inc
(neighborhood symmetry of 0-order)( TICO), Struatunformation Content index (neighborhood symmetfy-order)(
SIC0), Complementary Information Content index ghéorhood symmetry of Order)( CIC0), Bond Informatic
Content index (neighborhood symmetry of 0-orded)C®, Information Content index (neighborhood synmyef 1-
order)( IC1), Total Information Content index (neiigrhood symmetry of érder)( TIC1), Structural Informatic
Content index (neighborhood symmetry obrber)( SIC1), Complementary Information Conterter (neighborhoc
symmetry of 1-order)( CIC1), Bond Information Camténdex (neighborhood symmetry ofotder)( BIC1), Informatio

Content index (neighborhood symmetry of 2-ordeEg)l, Total Information Content index (neighborhaydhmetry of 2-

order)( TIC2), Structural Information Content indémeighborhood symmetry of @der)( SIC2), Complemente
Information Content index (neighborhood symmetrylafrder)( CIC1), Bond Information Content index (riéigrhooc
symmetry of 2-order)( BIC2), Information Contentléx (neighborhood symmetry ofddder)( IC3), Total Informatio
Content index (neighborhood symmetry ofoder)( TIC4), Structural Information Content indéreighborhoo
symmetry of 3-order)( SIC3), Complementary InforimatContent index (neighborhood symmetry of 3-oyd&iC3),
Bond Information Content index (neighborhood synmnef 3-order)( BIC3), Information Content index (neighbooki
symmetry of 4-order)( IC4), Total Information Contandex (neighborhood symmetry ofofder)( TIC4), Structur:
Information Content index (neighborhood symmetry4adrder)( SIC4), Complementary Information Conterder
(neighborhood symmetry of 4-order)( CIC4), Bondohmfiation Content index (neighborhood symmetry afrder)(
BIC4), Information Content index (neighborhood syetry of 5-orer)( IC5), Total Information Content ind
(neighborhood symmetry of 5-order)( TIC5), Struatunformation Content index (neighborhood symmaetfys-order)(
SIC5),Complementary Information Content index (héirhood symmetry of 5-order)( CIC5), Bond dmhatior
Content index (neighborhood symmetry of 5-order)CH, AutocorrelatiorEigenvalue 03 from edge adj. ma
weighted by dipole momer{Eig03d),Eigenvalue 13 from edge adj. matrix wegh by dipole
moments(EEig13d),Eigenvalue 13 from edge adj. maiveighted by edge degrees (EEigl8kape profile nc
05(SP05),Moran autocorrelation - lag 3 / weighted &tomic Sanderson electronegativities(MAT SBieran
autocorrelation - lag 4 / weighted by atomic pdabilities(MATS4p),Moran autocorrelatiorf lag 5 weighted by ma
(MATS5m)

Molecular weight (MW), average molecular weight (K, sum of atomic van der Waals volumes (scaled on dZx
atom) (Sv), sum of atomic Sanderson electroneigativ(scaled on Carbon atom)(Sejum of atomic polarizabilitie
(scaled on Carbon atom) (Sp), sum of first ion@atotentials (scaled on Carbon atom) (Si), meamiatvan der Waa
volume (scaled on Carbon atom ( Mv), mean atomitd8eson electronegativity (scaled on Carbon atdvig)( meai
atomic polarizability (scaled on Carbon atom) (Mpgan first ionization potential (scaled on Carbtom) (Mi), numbe
of atoms (nAT), number of non-H atoms (nSK), numifdoonds (nBT),

number of non-H bonds( nBO), number of multiptats( nBM),

sum of conventional bond orders ¢lépleted) (SCBO),number of rotatable bonds (RBMNjatable bond fractic
(RBF),number of double bonds (nDB), number of &ifdonds (nTB),number of aromatic bonds( nAB),numbk
Hydrogen atoms( nH),number of Carb atom (nC),number of Nitrogen atoms (nN), numbérOxygen atom
(nO),number of Phosphorous atoms (nP),number duSatoms (nS), number of Fluorine atoms (nF) , hemol
Chlorine atoms (nCL) ,number of Bromine atoms (nBRMber of lodine atoms (nlumber of Boron atoms (nE
number of heavy atoms (nHM),number of heteroatontéef),number of halogen atoms (nX),percentage aftdins
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Descriptor classes Descriptor names

(H%)percentage of C atoms (C%), percentage ofdxhat(N%),percentage of O atoms (O%) , percentadeloiger
atoms (X6), number of sp3 hybridized Carbon atoms (nCap@)ber of sp2 hybridized Carbon atoms( nCsp2), reu
of sp hybridized Carbon atoms (nCsp)

Gravitational index G1(G1), gravitational index @®nd-restricted)( G2), radius gfration (mass weighted)( RGy
span R(SPAN), average span R(SPAM), molecular ¢gcigy(MEcc), spherosity(SPH), asphericity(ASPP Petitjear
shape index(PJI3), length-to-breadth ratio by WHIMB(), Folding degree index (FDI), Harmonic Osditla Model of
Aromaticity index(HOMA), ring complexity index(RGlaromaticity index(AROM), HOMA total(HOMT), disptemen
value / weighted by mass(DISPm), quadrupole x-carapbvalue / weighted by mass(QXXm), quadrupotogponen
value / weighted by mass(QYYm), quadrupoleoraponent value / weighted by mass(QZzZm), displacgmalue
weighted by van der Waals volume(DISPv), quadrugedemponent value / weighted by van der Waals vol@¥e{v),
quadrupole y-component value / weighted by vanWwlaals volume(QYYv), quadrupolecmponent value / weight
by van der Waals volume(QZ2v), displacement valueeighted by Sanderson electronegativity(DISPegdqupole X-
component value / weighted by Sanderson electrdivagéQXXe), quadrupole y-component value / igleted by
Sanderson electronegativity(QYYe), quadrupoleomponent value / weighted by Sanderson electronagéQZZe),
displacement value / weighted by polarizability(Bf§, quadrupole xemponent value / weighted
polarizability(QXXp), quadrupole y-component valueeighted by polarizability(QYYp), quadrupolecemponent valu
/ weighted by polarizability(QZZp), sum of geomedii distances between N..N(G(N..N)), sum of geoicetdistance
between N..O(G(N..O)), sum of geometrical distanbesveen N..S(G(N..S)), sum of geometrical distances bet
N..F(G(N..F)), sum of geometrical distances betwde@I(G(N..Cl)), sum of geometrical distances bedw N..I((N..1))
sum of geometrical distances between O..0(G(O..8)n of geometrical distancéetween O..S(G(O..S)), sum
geometrical distances between O..F(G(O..F)), sugeommetrical distances between O..CI(G(O..Cl)),sdigeometrice
distances between O..I(G(O..l)), sum of geometridistances between S..S(G(S..S)),sum of geometdisthrees
between S..F(G(S..F)), sum of geometrical distarimween S..CI(G(S..Cl)), sum of geometrical distanbetwee
S..I(G(S..1)),x sum of geometrical distances betwee.CI(G(CI..Cl)

number of terminal primary C(sp3)(nCpymber of total secondary C(sp3)(nCs), humber tafl tertiary C(sp3)( nCt
number of ring secondary C(sp3)( nCrs), numberimg tertiary C(sp3)( nCrt), number of aromatic @¥ nCar)
number of unsubstituted benzene C(sp2)( nCbH)mbau of substituted benzene C(sp2)( nCb), numbapofromatic
conjugated C(sp2)( nCconj), number of terminal amiynC(sp2)( nR=Cp), number of aliphatic second&sp2)( nR=Cs;
number of aliphatic tertiary C(sp2)( nR=Ct), numleéregers (aromatic)( nArCOOR), number of positively e
N(nN+), number of nitro groups (aromatic)( nArNO&ymber of hydroxyl group(nROH), number of etheaiphatic)(
nROR), number of ethers (aromatic)( NArOR), numtiieCH2RX(nCH2RX), number of X oaromatic ring(nArX)
number of donor atoms for H-bonds (N and O)( nHDan)mber of acceptor atoms forbdénds (N,O,F)( nHAcc), CH3
7 CH(C-001 ), CH2R2(C-002), CHR3(C-003), CH3X(C-pOEH2RX(v)( C-006), CHR2X(C-008), =CH2(Q15),
=CHR(C-016), =CR2(C-017), R--CH—R(C-024), R--CR—R{g5), R--CX—R(C-026), R-C(=X)-X / FG#X [/
X=C=X(C-040), H attached to CO(sp3) no X attachedchéxt C(H-046), H attached to C1(sp3)/CO(sp2)047), +
attached to C2(sp3)/C1(sp2)/CO(sp)( H-048), H attddo heteroatom(H-050), H attached to alpha-QgH), H attache
to CO(sp3) with 1X attached to next C(H-052), at¢®-056), #NOME?( O-058), Al-O-Ar / Ar-O-Ar / R..(R / R-O-
C=X(0-060), C—( 0-061),Cl attached to C1(sp2)(-089), | attached to C1(sp2-099), R=S(-108)

Geometrical
descriptors

Functional Group and
Atom centered
Fragments descriptor

Statistical M ethodology

Stepwise-Multiple Linear Regression Analysis. Quantitative structure—activity relationships aggression models
having significant role in the biochemical scienae®l engineering. QSAR regression models relatetaok
predictor variables (X) calculated from the cherhitauctures to the potency of the response vai@¥) which is
biological activity. It is necessary to considedaage number of physicochemical as well as othécutated
molecular descriptors such as constitutional, geocad, electrostatic, topological, functional gpwand atom
centered fragments descriptors for the QSAR mogdealfrchemical compounds. In the present studyrgelaumber
of different types of topological as well as phypsibemical descriptors have been taken into coreider to
develop QSAR of-carboline compounds. Multivariate regression asialyMRA), one of the oldest data reduction
methodologies, continues to be widely used in Q328R, as it does not impose any restriction on tipe and
number of graphical invariants used in structurepprty—activity studies.The ultimate goal of QSA&séd drug
design is to find out which structural propertiemfer the drug highest potency or lowest toxicithe drug’s
potency is here a dependent variable, and the tstalcproperties, also called molecular descriptaie the
independent variables. The experimental signalrtfegtsures the potency could be, for example, tiairg affinity
of a drug candidate to its target protein [24].9&nlinear regression is the method of choice whenresearch
question is to predict the value of a response €déent) variable, denotéf] from an explanatory (independent)
variable X.The regression model is

Y =a+ bX

The extension of simple regression to two or modependent variables is straightforward. For examiplfour
independent variables are being studied, the nhelltggression models is
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Y = a4 b1X1 1 bEXE{ b‘3.}‘:3 + b4X4

whereX; is the first independent variable amds the regression coefficient associated withitis the second
independent variable ard is the regression coefficient associated withaiitg so on. This arithmetic equation is
called alinear combination; thus, the responsdalbbaY can be expressed as a (linear) combination of the
explanatory variables. Note that a linear combarais really just a weighted average that giveimgles number (or
index) after theX's are multiplied by their associatkd and théoX products are added[25-26].

The selection of significant predictor variablesaigrucialstep in any QSAR study. If the assocmtietween the
parameter(s) selected and activity is strong, thetivity predictions will be possible. If there tnly weak
association, knowing the value of the parametes)not help in predicting activity. Thus, for avgn study,
parameters should be selected which are relevahetactivity for the series of molecules underestigation and
these parameters should have values which arenebtan a consistent manner. In the present stugpwise
forward-backward based feature selection methodrparated in Minitab software[27] has been apptegredict
the significant variables.The stepwise forward-lveankl based feature selection method begins witlcamalidate
variables in the model. Predictor variables ara tbleecked one at a time using the partial coratioefficient
(equivalently F to enter) as a measure of impogdn@redicting the dependent variable. At eachestae variable
with the highest significant partial correlatiorefficient (F to enter) is added to the model. Otinég has been done
the partial F statistic (F to remove) is computeddil variables present in the model to checknif af the variables
previously added can now be deleted. This procedurentinued until no further variables can beeatldr deleted
from the model. The partial correlation coefficiént a given variable is the correlation between given variable
and the response when the present independenbhesrimn the equation are held fixed. It is also tberelation
between the given variable and the residuals comapfriom fitting an equation with the present indegent
variables in the equation. After variable selectiomltiple linear regression (MLR) method has based to derive
a number of training QSAR models using differenpety of descriptor such as topological, constitatioand
geometrical, functional group and atom centerednfrants indices respectively which are solely cal@d from the
structure of thgg-caboline compounds [28].

Model Validation

The QSAR model based on the topological, constitati, geometrical, functional group and atom ceuter
fragments descriptors calculated solely from theicstires ofp-caboline compounds are validated prior to its
application for prediction of biological activities the newly generated compounds. For proper atitid of the
model, the total compound data set is divided frating and test sets. 69% of the 80 moleculecansidered as
training set to build QSAR models while remaining%@ is taken as test set. The division is done doen
selection. Test set molecules are indicated byisktgiven in Table 1.The quality of each modetienoted by R
(R is the square root of multiple R-square for esgion), &(cross-validated? values for the training set, an
external validation was performed by calculatingdictive F?(Rpredz) and the standard error of estimation,SEE
represents standard deviation which is measurethdyerror mean square,which expresses the variafiche
residuals or the variation about the regressioa. lirhusstandard deviation is an absolute measugeaity of fit
and should have a low value for theregression tsidp@ficant.

R’and @of a model can be obtained from:

Hg o e Zryabu — F::c:l:)?z
> (Yo —Y)

R? is a measure of explained variance. Each additidhavariableadded to a model increaseé Réis a
relativemeasure of fit by the regression equati©arrespondingly, it represents the part of the atenm inthe
observed data that is explained by the regression.

Calculation of &(cross-validated’) is called as internal validation.

02 —1— Z' Yie. = Yprej :'E
Ef Yobs — 1"}:'2
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where, Yyps and Y,eq indicate observed and predicted activity valuespeetively and indicates mean activity
value. A model is considered acceptable when theevaf F exceeds 0.5.
External validation or predictability of the models performed by calculating predictivé(Rpredz).

¥ (Vo gresty — Yiresn)”

R =1 ().
i Z[KT::&:- - ﬁralnlng:'z

where, Yrequesy@nd Yiesy indicate predicted and observed activity valuspeetively of the test set compounds and

¥ aningindicates mean of observed activity values of théning set. For a predictive QSAR model, the vadtie
R%prea should be more than 0.5 [29-30].

RESULTSAND DISCUSSION

QSAR modeling

A number of six QSAR models have been develope@-marboline compoundsutilizingvarious sets of coragut
molecular descriptors. In QSAR modeling for thesageners, the predictors consist of various setshgtico-
chemical properties or theoretical molecular dggors of chemical compounds andanticancer actiité the
chemicals against different glioma cancer celldimgcluding U373 and Hs683 which are consideredeaponse-
variable. The developed models are given in theviohg Table 3.

Table 3: Different QSAR models along with the statistical quality parameters

Glioma Model Statistical parameters related to quality of the
cancer Cell number Descriptor type Model Equation model
lines R? SEE | PRESS 0 | R
-log (IC50) = - 24.81 + (7.19) x (EEig03d)+(43:4)
) (X3AV)+(-2.18)x (XEEig13d)+(1.11) X y
1 Topological (EEigl3x)+(1.72) X (MATSSm)+  (-0.28)X 0.917 | 0.243| 2.25380 0.878 0.646
U373 (MAXDN)
(n=33) 2 Constitutional and) ;. jc50) = -2.034+(0.00206) x (QYYm) 0716 0.4135.95002| 0679 0.613
Geometrical
3 EL;QSE'O”""' -log (IC50) = 0.05103+(-0.642) x (NHDon) 0596 (@40 8.31865| 0552 0.61
-log (IC50)= -5.659 +(0.793)x(SP0O5)+
4 Topological (3.50)x(MATS4p)+ (-0.730)x(TI2)+ (H 0.830 | 0.330 3.778 0.780 0.431
HS683 2.06)x(MATS3e)
— Constitutional and| -log (IC50) = 0.17184+(0.0028) x (QYYp)+ (-0.71)
(n=33) 5 Geometrical x (RGyr) +(-0.112) x (PC01-05) 0802 0.350| ~4.484] 0750 0.697
6 EL;QSEO””" =-0.1687 + (-0.656 x nHDon) 0642 045  7.264  6.590.591
Where, R(R is the square root of multiple R-square forresgion), Q..2(Leave one out cross-validated) values for the training set,R{ is the
predictive R for the test set, PRESS is predictive sum of sgudeviation for the training set, SEE is the stmdcerror of estimation.

From the QSAR models 1-3 developed for U373 gliaamacer cell line, it is cleared that topologicaddéptors can
explain and predict 91.7% and 87.8% of varianceshefin vitro glioma cancer cell inhibitory actie@$ of the
studied compounds. This model can also produce6éxX@ernal predictability.

Constitutional and geometrical descriptors canarphnd predict 71.6% and 67.9% of variances oftti®vities of
the studied compounds. This model can also pro6dcg% external predictability whereas functionadigr and
atom centered descriptors can explain 59.6% oféinmnces and can produce 55.2% of the internabaf of the
external predictability respectively. Then the tiiag QSAR models 1-3 are used to predict anticaacéwities
against U373 cancer cell line for test compounds.

The plot of observed versus predicted activitiesiie test compounds is represented in figuresili€.evident that
the predicted activities of all the compounds ie thst set using models 1-3 are in good agreemihttheir
corresponding observed activities and optimal ditobtained generated by the QSARs utilizing differget of
topological, constitutional and geometrical, fuono&l group and atom centered fragmentsdescriptors
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respectively.The square correlation coefficien®®) (petween experimental vs predicted activitieshaf test set
molecules calculated using QSAR models 1-3 are2) 8859 and 0.656 respectively.

2= ——
r2=0.682 Predicted
activity
o ¢
&
05 -
#
. e ;
-3 0 & 1 2
Observed activity

Figure 1. Observed activity vs. predicted activity of the test molecules
(Using model 1 based on topological indices)

r2=0619

1 =
Predicted
activity

£54

Figure 2: Observed activity vs. predicted activity of thetest molecules
(Using model 2 based on constitutional and geometrical descriptors)
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. . e e e e+
-3 -2 -1 / 1 2
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= activity
6 - L 4

Figure 3: Observed activity vs. predicted activity of thetest molecules
(Using model 3 based on atom center ed fragment descriptors)

For the inhibition of U373 glioma cancer cell, tépgical indices contributethe highest significamipiact on the
biological activity. Topological indices such asesage valence connectivity index of order 3 (X3Aand
Eigenvalue 03 from edge adjacency matrix weightedipole moments (EEig03d) with higher positive negsion
coefficients values produce higher level of sigmfit inhibition of the cancer cells followed by Eityalue 13 from
edge adj. matrix weighted by edge degrees (EEigh3x) Moran autocorrelation of lag 5 weighted by snas
(MATS5m) respectively. The descriptors includinggé&ivalue 13 from edge adj. matrix weighted by dipol
moments (EEig13d) and Maximal electrotopologicajaiare variation (MAXDN) can negatively contribub@ the
biological activities.Constitutional and geomettidascription based model describe the positivectféf only one
significant parameter as depicted byQyy COMMA2 ealuveighted by atomic masses (QYYm).

From the QSAR models 4-6 developed for Hs683 a®d|, lit is cleared that topological descriptors eaplain and
predict 83.0% and 78.0% of variances of the inoviglioma cancer cell inhibitory activities of théudied
compounds. This model can also produce 43.1% ealtpnedictability.Constitutional and geometricakdeptors
can explain and predict 80.2% and 75.0% of varigrodfethe activities of the studied compounds. Thadel can
produce 69.7% external predictability whereas fiometl group and atom centered descriptors can expth2% of
the variances and can produce 59.6% of the intem#/59.1% of the external predictability respesdtivAgain the
training QSAR models 4-6 are used to predict antiea activities against Hs683 cancer cell linetfa same test
set compounds.

The predicted activities for the test compoundiizirig models 4-6 are plotted against observedriiets. Here also
it is marked that the predicted activities of dletcompounds in the test set are almost alignetl thieir
corresponding observed activitiesas the squareelation coefficients (r2) between experimental vedicted
activities of the test set molecules using QSAR et®d-6 shows 0.483, 0.720 and 0.597 respectively.
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Figure 4: Observed activity vs. predicted activity of thetest molecules
(Using model 4 based on topological indices)
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Figure 5:Obser ved activity vs. predicted activity of thetest molecules
(Using model 5 based on constitutional and geometrical descriptors)
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Figure 6: Observed activity vs. predicted activity of the test molecules
(Using model 6 based on functional and atom centered fragment descriptors)

Predicted activities for the test compounds geedréily the variousQSARs utilizing different set opdlogical,
constitutional and geometrical, functional group @tom centered fragmentsdescriptors respectivelygaven in

Table 4.
Table 4: Predicted activitiesfor test set compounds using the developed models
U373 Glioma cancer cell line Hs683 Glioma cancdrlioe
Test Pre(_ji_cted Pret_jigted Pre(_ji_cted Pret_jigted Pret_jigted Pret_jigted
Observed activity activity activity Observed activity activity activity
compounds - . . . L . ’ .
activity (using model | (using model | (using model activity (using model | (using model | (using model
1) 2) 3) 4) 5) 6)
2 -1.50¢ -1.36¢ -1.647 -1.232 -1.447 -1.252 -1.75¢ -1.48(
3 -1.380 -0.880 -1.534 -1.232 -1.361 -1.175 -1.487 -1.480
7 -0.968 -1.100 -1.088 -1.232 -1.230 -1.057 -1.429 -1.480
11 -1.380 -1.286 -1.086 -1.232 -1.477 -0.207 -1.281 -1.480
14 -1.903 -0.794 -1.713 -1.232 -1.897 -1.723 -1.673 -1.480
17 -1.477 -0.232 -0.739 -0.590 -1.230 -1.433 -1.491 -0.824
21 -0.591 -0.594 -0.120 -0.590 -0.556 -0.430 -0.466 -0.824
25 -0.301 -0.098 0.429 0.051 -0.361 0.288 0.356 16®.
28 -0.408 0.014 -0.125 0.051 -0.431 -0.070 -0.027 0.168
32 -0.045 0.363 0.442 0.051 -0.653 -0.466 -0.575 .16®
36 0.431 0.794 0.025 0.051 -0.420 0.111 0.0003] 68).1
38 1.397 0.909 0.292 0.051 -0.491 -0.091 -0.168 16®.
40 0.657 -0.019 -0.410 0.051 0.585 -0.187 -0.121 .168®
45 0.420 -0.213 -0.385 -0.590 0.327 -0.602 -0.425 0.824
47 0.397 0.156 -0.062 0.051 0.376 0.0001 0.231 68).1

For the inhibition of Hs683 glioma cancer cell litepological indices such asMoran autocorrelatidag 4 /
weighted by atomic polarizabilities (MATS4p) andapk profile number 05 (SPO05) are responsible fodyxeing
positive impact on the cancer inhibiting activitigiereas second Mohar index TI2 (T12) and Moraoeartrelation
- lag 3 / weighted by atomic Sanderson electrongtias (MATS3e) can negatively influence on thelbgical
activities. Two parametric constitutional and getrcal based description model capture Qyy COMM#aRue /
weighted by atomic polarizabilities(QYYp) as positieffect and radius of gyration(mass weighted) ¥R@&s
negative effect on the anticancer activities.

Single parametric model is given by functional graand atom centered descriptors where no. of hydrdgpnd
donor (nHDon) is the main feature for inhibitionkafth U373 and Hs683 glioma cell lines. Decreatirgvalue of

Hydrogen bond donor may increase the inhibitione Tdifferent significant modeled parameters havenbee
interpreted in Table 5.
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Table5: Interpretation of the significant modeled predictors

Descriptor Abbreviation of the .
typep modeled descripto Modeled predictors
EEig03d Eigenvalue 03 from edge adj. matrix weidhig dipole moments
X3Av Average valence connectivity index of ords
EEig13c Eigenvalue 13 from edge adj. matrix weighted bybtipnoment
EEig13x Eigenvalue 13 from edge adj. matrix weightg edge degrees
Topological MATS5m Moran autocorrelation of lag 5 weighted bgss
MAXDN Maximal electrotopological negative variation
SP05 shape profile no. 05
MATS4p Moran autocorrelatio- lag 4 /weighted by atomic polarizabiliti
TI2 second Mohar index T
MATS3e Moran autocorrelation - lag 3 / weightedadgmic Sanderson electronegativities
QYYm Qyy COMMAZ2 value / weighted by atomic masses
Constitutional and Geometrical QYYp Qyy COMMAZ2 value / weighted by atomic polarikties
RGyr radius of gyration (mass weighted)
ztjonrgtl:oenniia(rirc? Lcjjz:;?pt ors nHDon Number of hydrogen bond donor
CONCLUSION

QSAR modelling for 48-caboline compounds having anticancer activitieshigyinhibition of DYRK1A mediated
caspase-9 activation is performed in the presetitlea considering a large number of theoreticallenolar
descriptor including topological, constitutional dageometrical,functional group and atom centereajrfrent
descriptors respectively. From our point of vievisita novel attempt to predict the significant jpcemt properties
responsible for producing anticancer activitiesheflse congeners against different glioma cancélines$ including
U373 and Hs683. QSAR modeled parameters have lmgerprietated and it is represented that the saifi
variables including X3Av, EEig13x, MATS5m and SP&&rrespond size, shape and weight of the molecules
whereas EEig03d, MATS4p and QYYp are correlated whie dipole moment, polarizabilities, conjugatiamd
aromaticity of the molecules. Increasing the valoéshe above parameters may enhance the cancibitamia
activities of thep-carboline compounds.The QSAR model obtained bggufiinctional group and atom centered
descriptors has predicted hydrogen bond donor réjatesents electrostatic interaction between thantd and
receptor molecules.This is to convey that theradsspecific theoretical modeling for these compausd far as
done, therefore, studies in this direction for exation of essential structural features of fhearboline congeners
under the frame work of computed molecular desoriptnay help to design more potent and active likadp-
carboline derivative which will be developed foethse of different cancers.
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