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ABSTRACT 
 
The emergence of multi-drug resistant strain of Escherichia coli (E.coli) has necessitated the exploration and 
development of newer structural moiety of Schiff bases as anti- E. coli agents owing to their enormous inhibitory 
activity against this bacterium. In this present study, a Genetic function approximation (GFA) QSAR analysis of 
some selected Schiff bases with anti- E. coli activity was performed using OD,1D, 2D and 3D descriptors resulting 
in the generation of three statistically significant models from which an octa-parametric model was selected as the 
most robust model  with R2 = 0.9622, R2adj = 0.9470, Q2 = 0.9132, R2 - Q2 = 0.049, R2 – R0

2 / R2 =0.00, R2 – R‘
0
2 / R2 

= 0.001, K = 1, K’ = 0.9622. The optimization model hinted the predominance of the size descriptor ETA-Eta-P-F-L 
(Local functionality contribution EtaF_local relative to molecular size) in influencing the observed anti-E. coli 
activity of Schiff bases. It is envisaged that the QSAR results identified in this study will offer important structural 
insight into designing novel anti-E. coli drugs from Schiff bases. 
 
Keywords: Escherichia coli, QSAR, descriptors, Schiff bases, MIC. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

The role of antimicrobial drugs in decreasing illness and death associated with infectious diseases in animals and 
humans cannot be overemphasized. However, selective pressure exerted on existing antimicrobial drug has 
orchestrated the emergence and spread of drug-resistance traits among disease causing and commensal bacteria [1].  
Of serious concern is the development of resistance by E.coli strains to the current antibiotics such as ampicillin, 
sulfonamide, gentamicin, streptomycin, ciprofloxacin, trimethoprim, amoxicillin [2, 3].  E.coli is often times a 
commensal bacterium of humans and animals but Pathogenic variants cause intestinal and extraintestinal infections, 
including gastroenteritis, urinary tract infection, meningitis, peritonitis, and septicemia [4, 5]. This trend of 
resistance exhibited by this organism poses serious threat to human and animals’ health, necessitating the search for 
newer antibiotics. 
 
In recent years, Schiff bases have received considerable attention because of their physiological and 
pharmacological activities [6]. This class of organic compounds have also demonstrated significant inhibitory 
activity against the growth of E. coli [7-10] making them potential drug candidate in man’s quest to curb the 
dangerous trend of multi-drug resistance posed by this pathogenic micro-organism. 
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Conventional drug discovery and development is characterized by trial and error approach. This is time consuming, 
costly due to the enormous expense of failures of candidate drugs late in their development and a threat to green 
chemistry due to enormous waste released into the environment. QSAR offer important structural insight in the 
design of novel anti-microbial drugs by exploring and harnessing the structural requirements controlling the 
observed anti-microbial activities as well as providing predictive model for bio-activities of potential drug 
candidates, reducing the requirement for lengthy, costly and hazardous laboratory test. QSAR is based on the 
conception that there exists a close relationship between bulk properties of compounds and their molecular structure. 
Thus, it is the basic tenet of chemistry to identify these assumed relationships and then to quantify them allowing a 
clear connection between the macroscopic and the microscopic properties of matter [11]. 
 
The aim of this work is to build a statistically robust, predictive and rational Genetic function approximation (GFA) 
based QSAR model for inhibitory activity of Schiff bases against E. coli. 
 

MATERIALS AND METHODS 
 
The molecular modeling studies were performed using the molecular modeling program SPARTAN’14 V1.1.0 
(www.wavefun.com). The “Cascade method” of molecular optimization was invoked for this study [12]. Here, the 
molecules were first pre-optimized with the molecular mechanics procedure included in Spartan’14 V1.1.0 software 
and the resulting geometries were further refined by means of a semi-empirical method (PM3). The choice of this 
method is anchored on the fact that it makes calculations less computationally taxing by relegating initial geometry 
calculations to less computationally intensive (and possibly more inaccurate) methods. The lowest energy structure 
was used for each molecule to calculate their physicochemical properties (molecular descriptors).  
 
Data set 
A data set comprising of series of 41 schiff bases with inhibitory activities expressed as minimum inhibitory 
concentration (MIC) against Escherichia coli was taken from reported articles [7-10] for this study. 70% of the data 
set (29 compounds) was used as training set for building the models while the remaining 30% was used as test set 
for external validation of the most statistically significant QSAR model. The notation, structure, MIC and pMIC of 
the compounds are shown in Table 1 below. 
 
Figure 1, 2, and 3 gives the parent structures of the Schiff bases with their experimentally determined anti-
Escherishia coli inhibitory activity in form of Minimum inhibitory activity (MIC). R, R1, R2 and R3 are the 
substituents to the parent structures. 
 

Table 1: Anti-S.typhi activity of the compounds (MIC µg/ml and pMIC) 
 

 
 

Figure 1: parent structure for compound 1-8 
 

Compound abel R R1 MIC pMIC 
C1 3-OCH3 4-CH3 22 1.342 
C2 3,4-OCH3 4-CH3 18 1.556 
C3 3,4,5-OCH3 4-CH3 36 1.079 
C4 3-OCH3, 4-OH 4-CH3 12 1.806 
C5 4-F 4-CH3 64 1.806 
C6 4-Cl 4-CH3 26 2.093 
C7 4-Br 4-CH3 64 1.342 
C8 4-I 4-CH3 124 1.556 
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Figure 2: parent structure for compound 17-32 

 
Compound label R R1 R2 R3 MIC pMIC 

C17 H H H Cl 23 1.362 
C18 H H H Br 21 1.322 
C19 H H H F 24 1.38 
C20 H H Cl F 42 1.623 
C21 H H H CH3 20 1.301 
C22 H H H OCH3 39 1.591 
C23 H H H NO2 22 1.342 
C24 H NO2 H NO2 16 1.204 
C25 Br H H Cl 40 1.602 
C26 Br H H Br 18 1.255 
C27 Br H H F 22 1.342 
C28 Br H Cl F 20 1.301 
C29 Br H H CH3 21 1.322 
C30 Br H H OCH3 24 1.38 
C31 Br H H NO2 17 1.23 
C32 Br NO2 H NO2 23 1.362 

 
 

 
Figure 3: parent structure for compound 33-44 

 
 R R1 MIC(µg/ml) pMIC 

C33 H N(CH3)2 20 1.301 
C34 H N(C2H5)2 16 1.204 
C35 H N(C6H5)2 20 1.301 
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C39 Br N(CH3)2 16 1.204 
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C41 Br N(C6H5)2 17 1.23 
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C43 

 
Br 

 

 

 
21 

 
1.322 

 

 
C44 

 
Br 

 

 

 
27 

 
1.431 

 

 
Model building 
The computed descriptors were subjected to regression analysis with the experimentally determined minimum 
inhibitory concentration on logarithmic scale (pMIC) as the dependent variable and the selected descriptors as the 
independent variables using Genetic function approximation (GFA) method in Material studio software. To develop 
the optimization model, 29 samples were included in the training set. The number of descriptors in the regression 
equation was set to 5, and Population and Generation were set to 1,000 and 5,000, respectively. The number of top 
equations returned was 5. Mutation probability was 0.1, and the smoothing parameter was 0.5. The statistical 
significance of the generated models were assessed based on Friedman’s LOF and the optimum model was selected 
based on this parameter. 
 
Model Validation 
A reliable validation procedure is required in order to confirm the existence of chance correlations as well as 
ascertaining the fitting ability, stability, reliability and predictive ability of the developed models. The optimum 
model was validated and its validation parameters were compared with the standards shown in Table 2 below. 
 
 

Table 2: Validation metrics for a generally acceptable QSAR model 
 

S/n Metric symbol Name Threshold 
1 R2 Coefficient of determination ≥ 0.6 
2 Q2 LOO  cross validation coefficient ˃ 0.5 
3 R2

pred. External test set’s coefficient of determination ≥ 0.6 
4 R2 - Q2 Difference between R2 and Q2 ≤ 0.3 
5 F value Variation ratio High 
6 R2 – R0

2 / R2 Golbraikh and Tropsha condition ˂ 0.1 
7 R2 – R’

0
2 / R2 Golbraikh and Tropsha condition ˂ 0.1 

8 K and K’  Intercept 0.85 ≤ k or k’ ≤ 1.15 
Source: Roy et al.; Ravinchandran et al.; Golbraikh and Tropsha [13, 14, 15] 

 
Internal validation parameters 
This validation is done using the data that created the model. The various internal validation parameters invoked in 
this study are presented thus; 
 
R2 (the square of the correlation coefficient): describes the fraction of the total variation attributed to the model. 
The closer the value of R2 is to 1.0, the better the regression equation explains the Y variable. R2 is the most 
commonly used internal validation indicator and is expressed as follows: 
 

R2 = 1 - 
∑(�������	
�)


∑(�������	������)
                     (1) 

 
Where, Yobs; Ypred ;Ytraining are the experimental property, the predicted property and the mean experimental 
property of the samples in the training set, respectively [16]. 
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Adjusted R2 (R2
adj): R2 value varies directly with the increase in number of regressors i.e. descriptors, thus, R2 

cannot be a useful measure for the goodness of model fit. Therefore, R2 is adjusted for the number of explanatory 
variables in the model. The adjusted R2 is defined as: 
 

R2
adj = 1- (1 − ��) ���

����� = 
(���)�
��
�����                (2) 

 
Where p = number of independent variables in the model [17] 
 
Q2 (Leave one out cross validation coefficient): The LOO cross validated coefficient (Q2) is given by;  
 

Q2 = 1 - 
∑(����)

∑(����)
            (3) 

 
Where Yp and Y represent the predicted and observed activity respectively of the training set and Ym the mean 
activity value of the training set [17]. 
. 
Variance Ratio (F): this parameter is used to judge the overall significance of the regression coefficient. It is the 
ratio of regression mean square to deviations mean square defined as: 
 

F =     

∑(�������)

� ∑(���������)

�����
��              (4) 

Where Yobs stands for the observed response value, while Ycalc is the model-derived calculated response and Ym is 
the average of the observed response values. The F value has two degrees of freedom: p, N − p − 1. The computed F 
value of a model should be significant at p < 0.05. A high F value is an indication that the regression coefficients are 
significant [13]. 
Standard error of estimate (s): Low standard error of estimate is an indication of a good model. It is defined as 
follows: 
 

S = √
(���������)


�����                  (5) 

 
Its degree of freedom is N-p-1 [13]. 
 
Leave one out cross validation (LOOCV): in this cross validation approach, the model is repeatedly refit leaving 
out a single observation and then used to derive a prediction for the left-out observation.  For the model to have an 
excellent prediction ability, Q2 must be ˃ 0.5 and R2 – Q2 value should not exceed 0.3. The equation for CV is: 
 

Q2 = 1 − �� !!
∑(�����)
                (6) 

PRESS = ∑	(#$%&', ) − #))          (7) 
 
Q2 = LOOCV cross validation coefficient, R2 = coefficient of determination. 
 #) is the data value(s) not used to construct the CV model, PRESS is the predictive residual sum of the squares, #* 
= mean of the experimental bioactivity (pMIC), #$%&', ) is the predicted #) [14]. 
 
Metrics for external validation  
External validation of QSAR model is performed in order to ensure the predictability and applicability of the 
developed QSAR model for the prediction of untested molecules. The various external validation metrics used in 
this work are highlighted thus: 
 
Predictive R2 (R2

 pred.): R
2 pred. is termed the predictive R2 of a development model and is an important parameter 

that is used to test the external predictive ability of a QSAR model. The predicted R2 value is calculated as follows; 
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R2
pred. =1 – 

∑[����(�
��)���	
�(�
��)]

∑[����(�
��)���(�	������)]
                 (8) 

 
Ypred(test) and Yobs(test) indicate predicted and observed activity values respectively of the test set compounds and 
Ym(training) indicates mean activity value of the training set [14]. 
 
Golbraikh and Tropsha’s criteria: according to Golbraikh and Tropsha, models are considered satisfactory, if all 
the following conditions are met. 
(a) R2

test ˃ 0.5 
(b) (R2 – R0

2 / R2 ) ˂ 0.1 
(c) (R2 – R’

0
2 / R2 ) ˂ 0.1 

(d) 0.85 ≤ k ≤ 1.15 
(e) 0.85 ≤ k’ ≤ 1.15 
 
Parameters R2 and R0

2 are the squared correlation coefficients between the observed and predicted values of the 
compounds with and without intercept, respectively. The parameter R’0

2 bears the same meaning with R0
2 but uses 

the reversed axes. K is the intercept of the plot of the observed and predicted values of the compounds and K’ the 
reversed axes intercept [15]. 
 

RESULTS AND DISCUSSION 
 

The equations are the QSAR mathematical models while the terms are the molecular descriptors. Detailed definition 
of the descriptors that appeared in the models are given Table 5. 
 

Table 3: GFA derived QSAR models for the KOA of the selected POPs 
 

Model                 Equation Definition of terms 
 
 
 
1. 

 $-./	 = 		0.028330211	 ∗ 	77									+	0.754079982	 ∗ 	732							−	5.518138173	 ∗ 	757							+	47.796805665	 ∗ 	762							+	0.494140811	 ∗ 	773							−	0.146023548	 ∗ 	7144							−	0.000885791	 ∗ 	7149							−	0.069505442	 ∗ 	7195							−	8.198314822	
   	

 
X7 : ATSm5 
X32  : VP-3 
X57 : ETA_EtaP_F 
X62 : ETA_EtaP_F_L 
X73 : nHBDon 
X144 : RNCS 
X149 :  GRAV-1 
X195 : Wlambda2.volume 

 
 
 
2. 

 $MIC	 = 												0.034301705	 ∗ 	77							−	6.239202363	 ∗ 	757							+	36.506138720	 ∗ 	762							+	0.564599476	 ∗ 	773							+	0.025662395	 ∗ 	780							−	0.158090685	 ∗ 	7144							−	0.075859857	 ∗ 	7195							+	0.026847150	 ∗ 	7208							−	4.155706232	
 

 
X7 : ATSm5 
X57 : ETA_EtaP_F 
X62 : ETA_EtaP_F_L 
X73 : nHBDon 
X80 :  nAtomP 
X144 : RNCS 
X195 : Wlambda2.volume 
X208 : Wlambda2.eneg 

 
 
3. 

 $MIC = 								0.030272104	 ∗ 	77							+	0.019990735	 ∗ 	747							−	6.413499672	 ∗ 	757							+	33.104729852	 ∗ 	762							+	0.538824561	 ∗ 	773							+	0.030292997	 ∗ 	780							−	0.146988859	 ∗ 	7144							−	0.083336920	 ∗ 	7195							+	0.025485956	 ∗ 	7208							−	3.293980187	
 

 
X7 : ATSm5 
X47 : ETA_Beta_ns 
X57 :  ETA_EtaP_F 
X62 : ETA_EtaP_F_L 
X73 :  nHBDon 
X80 : nAtomP 
X144 :  RNCS 
X195 :  Wlambda2.volume 
X208 : Wlambda2.eneg 

 
 



John Philip Ameji et al                             J. Comput. Methods Mol. Des., 2015, 5 (4):84-96  
______________________________________________________________________________ 

91 
Available online at www.scholarsresearchlibrary.com 

Table 4: Validation Parameters of the models 
 

S/n Parameters Model 1 Model 2 model 3 
1 Friedman LOF 0.02221800 0.02241300 0.02297500 
2 R-squared 0.96216800 0.96183600 0.97122700 
3 Adjusted R-squared 0.94703500 0.94657000 0.95759800 
4 Cross validated R-squared 0.91317900 0.91730900 0.94418000 
5 Significant Regression Yes Yes Yes 
6 Significance-of-regression F-value 63.58191400 63.00667100 71.26126300 
7 Critical SOR F-value (95%) 2.45092100 2.45092100 2.42509900 
8 Replicate points 0 0 0 
9 Computed experimental error 0.00000000 0.0000000 0.00000000 
10 Min expt. error for non-significant LOF (95%) 0.06688400 0.06717700 0.05953900 

 

The GFA algorithm makes use of a population of many models rather than generating a single model. The models 
are scored using Friedman's “lack of fit” (LOF) measure as the evaluation function [18, 19]. Thus, based on model 
with the least LOF score, model 1 is selected as the optimization model for predicting the MIC of Schiff bases. 
 
The symbols and detailed definition of the descriptors that appeared in the models depicted in Table 3 are given in 
Table 5 below. 
 

Table 5: Detailed definition of descriptors 
 

S/n Descriptor symbol Definition 
1 ATSm5 ATS autocorrelation descriptor, weighted by scaled atomic mass 
2 VP-3 Valence path, order 3 
3 ETA_EtaP_F Functionality index EtaF relative to molecular size 
4 ETA_EtaP_F_L Local functionality contribution EtaF_local relative to molecular size 
5 ETA_Beta_ns A measure of electron-richness of the molecule 
6 nHBDon Number of hydrogen bond donors. 
7 RNCS Relative negative charge surface area -- most negative surface area * RNCG 
8 GRAV-1 Gravitational index of heavy atoms 
9 Wlambda2.volume Directional WHIM, weighted by van der Waals volumes 
10 Wlambda2.eneg Directional WHIM, weighted by Mulliken atomic electronegativites 
11 nAtomP Number of atoms in the largest pi system 

 

 

. 
 

Figure 4: Plot of actual pMIC against predicted pMIC 
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. 
 

Figure 5: Residual plot of model 1 
 
Table 6 gives the predicted pMIC (Ypred.) of the anti-E. coli Schiff bases used as external test set for model 
validation obtained by substituting the values of the descriptors in column 3,4,5,6,7,8,9, and 10 into the optimum 
QSAR model (model 1). Column 1 gives the experimentally determined pMIC (Yobs) values of the test set 
compounds; Ym is the mean pMIC of the training set compounds.  
 

Table 6: External validation of Model 1 
 

Test cpd Yobs ATSm5 VP-3 ETA_EtaP_F ETA_EtaP_F_L nHBDon RNCS 
C2 1.255 22.159 2.80426 0.89724 0.29502 0 5.734714 
C6 1.415 14.450 2.518645 0.8326 0.28839 0 3.793112 
C17 1.362 33.242 3.183458 1.04066 0.31 0 5.834262 
C20 1.623 38.266 3.297687 1.08743 0.31395 0 5.097443 
C24 1.204 48.912 3.562283 1.3036 0.33392 0 3.733877 
C29 1.322 44.595 3.686629 0.99604 0.2931 0 5.701515 
C32 1.362 62.217 4.110085 1.28505 0.3157 0 4.588109 
C35 1.301 70.502 6.431879 1.28689 0.30113 0 2.149159 
C37 1.342 55.530 5.582728 1.04743 0.23984 2 1.436629 
C39 1.204 65.475 5.106156 1.07431 0.26108 1 1.547756 
C41 1.23 84.472 6.976827 1.25252 0.25711 1 0.674175 
C43 1.322 68.835 6.13053 1.03114 0.22901 2 1.416237 

 
 

Test set GRAV-1 Wlambda2.volume Ypred Ym (Yobs-Ypred)
2 (Yobs-Ym)2 

C2 1.70E+03 1.908207 1.22 1.53 0.001445 0.073441 
C6 1.45E+03 1.205697 1.38 1.53 0.001262 0.012321 
C17 2.10E+03 0.06367 1.50 1.53 0.019272 0.026896 
C20 2.23E+03 2.347013 1.49 1.53 0.016399 0.009409 
C24 2.69E+03 1.980924 1.58 1.53 0.139091 0.103684 
C29 2.29E+03 2.650138 1.31 1.53 5.11E-05 0.041616 
C32 2.95E+03 0.360036 1.35 1.53 0.000116 0.026896 
C35 3.64E+03 15.41845 1.33 1.53 0.000997 0.050625 
C37 3.03E+03 1.218562 1.28 1.53 0.003887 0.033856 
C39 3.01E+03 5.518675 1.27 1.53 0.004778 0.103684 
C41 4.01E+03 6.505369 1.22 1.53 0.000132 0.087616 
C43 3.29E+03 1.377386 1.40 1.53 0.006037 0.041616 

     ∑ = 0.193466 ∑ =0.61166 

 
The predicted R2 value for the test set compounds is calculated using the formulae in equation 8. 
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Thus, R2
pred. = 1 – (

A.�BCDEE
A.E��EE ) = 0.6837 

 
Table 7: Golbraikh and Tropsha external validation parameters for model 1 

 
s/n Parameter Value 
1 r2 0.9622 
2 r’02 0.9608 
3 r02 0.9622 
4 k 1 
5 K’  0.9622 

 
Based on the parameters above; 

R2 – R0
2 / R2 = 

A.BE���A.BE��
A.BE�� = 0.000 

R2 – R’
0
2 / R2  = 

A.BE���A.BEAF
A.BE�� = 0.001 

 
Table 8: Comparison of Yobs (training) and Ypred.(training) of model 1 

 
Name Yobs Ypred Residual 

C1 1.342 1.39333 -0.05133 
C3 1.556 1.494089 0.061911 
C4 1.079 0.995213 0.083787 
C5 1.806 1.899129 -0.09313 
C7 1.806 1.876937 -0.07094 
C8 2.093 1.975795 0.117205 
C12 2.301 2.263063 0.037937 
C13 2.301 2.318343 -0.01734 
C14 2.398 2.312507 0.085493 
C15 2 2.062778 -0.06278 
C16 1.362 1.433831 -0.07183 
C18 1.322 1.37101 -0.04901 
C19 1.38 1.293494 0.086506 
C21 1.301 1.352256 -0.05126 
C22 1.591 1.551997 0.039003 
C23 1.342 1.410229 -0.06823 
C25 1.602 1.438125 0.163875 
C26 1.255 1.260037 -0.00504 
C27 1.342 1.352068 -0.01007 
C28 1.301 1.355503 -0.0545 
C30 1.38 1.329319 0.050681 
C31 1.23 1.368738 -0.13874 
C33 1.301 1.269841 0.031159 
C34 1.204 1.166293 0.037707 
C36 1.279 1.217333 0.061667 
C38 1.415 1.416018 -0.00102 
C40 1.255 1.310682 -0.05568 
C42 1.279 1.293169 -0.01417 
C44 1.431 1.472874 -0.04187 

 
Euclidean based applicability domain for the optimum QSAR models: 
Applicability domain (AD) is the physicochemical, structural or biological space, knowledge or information on 
which the training set of the model has been developed. The resulting model can be reliably applicable for only 
those compounds which are inside this domain. It is based on distance scores calculated by the Euclidean distance 
norms. At first, normalized mean distance score for training set compounds are calculated and these values ranges 
from 0 to 1 (0 = least diverse, 1 = most diverse training set compound). Then normalized mean distance score for 
test set are calculated, and those test compounds with score outside 0 to 1 range are said to be outside the 
applicability domain [20]. 
 
The Euclidean based applicability domain for test and training set compounds are shown in Tables 9 and 10 
respectively. 
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Table 9: Euclidean based applicability domain for test set compounds 
 

Test cpd. Distance Score Mean Distance Normalized Mean Distance 
C2 19999.12 689.625 0.172 
C6 24832.34 856.288 0.325 
C17 15298.04 527.519 0.024 
C20 14590.55 503.123 0.001 
C24 18687.86 644.409 0.131 
C29 14574.45 502.567 0.001 
C32 23492.69 810.093 0.283 
C35 39427.3 1359.562 0.787 
C37 25008.91 862.376 0.331 
C39 24635.35 849.495 0.319 
C41 49658.22 1712.353 1.11 
C43 30733.76 1059.785 0.512 

 
Table 10: Euclidean based applicability domain for training set compounds 

 
Training set cpd Distance Score Mean Distance Normalized Mean Distance 

C1 23621.15 814.522 0.287 
C3 17317.72 597.163 0.087 
C4 21392.38 737.668 0.216 
C5 25083.4 864.945 0.333 
C7 22150.96 763.826 0.24 
C8 21050.16 725.868 0.205 
C12 14551.67 501.782 0 
C13 14636.81 504.717 0.003 
C14 24082.77 830.44 0.301 
C15 19400.24 668.974 0.153 
C16 27512.74 948.715 0.41 
C18 14601.45 503.498 0.002 
C19 15367.83 529.925 0.026 
C21 15997.68 551.644 0.046 
C22 14878.55 513.054 0.01 
C23 14600.75 503.474 0.002 
C25 14741.56 508.33 0.006 
C26 15793.31 544.597 0.039 
C27 14691.04 506.588 0.004 
C28 15794.43 544.636 0.039 
C30 15159.66 522.747 0.019 
C31 17089.16 589.281 0.08 
C33 17839.9 615.169 0.104 
C34 19880.23 685.525 0.169 
C36 39149.11 1349.969 0.778 
C38 25578.98 882.034 0.349 
C40 27056.27 932.975 0.395 
C42 46174.93 1592.239 1 
C44 31653.11 1091.486 0.541 

 
Table 11 gives the P-value of the optimum GFA derived QSAR model at 95% confidence level. SS, DF, MS, and F 
in the table represents sum of squares, degree of freedom, mean square and F-ratio respectively. 
 

Table 11: P-value of the model at 95% confidence level 
 

Source SS DF MS F p-value 
Difference 3.5803 8 0.4475 63.4162 <0.0001 
Error 0.1411 20 0.007057 

  
Null model 3.7214 28 

   
 
Tables 3, 4, and 5 give the GFA derived QSAR models for predicting minimum inhibitory concentration (MIC) of 
Schiff bases, validation parameters of the models, and detailed definition of the descriptors used in the models 
respectively. Based on the validation parameters, the octa-parametric model (model 1) was selected as the 
optimization model for predicting the MIC of Schiff bases. The Genetic Function Algorithm derived QSAR model is 
good agreement with the minimum standard shown in Table 2 as R2 = 0.9622, R2adj = 0.9470, Q2 = 0.9132, R2pred. = 
0.6837 and the Golbraikh and Tropsha criteria for robust QSAR model were also met, the result in Table 7 confirms 
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this. The predictability of model 1 is evidenced by the low residual values observed in Table 8 which gives the 
comparison of observed and predicted MIC of the molecules. Also, the plot of predicted pMIC against observed 
pMIC shown in Figure 1 indicates that the model is well trained and it predicts well the pMIC of the compounds. 
Furthermore, the plot of observed pMIC versus residual pMIC (Figure 2) indicates that there was no systemic error 
in model development as the propagation of residuals was observed on both sides of zero [21].  
 
Table 11 gives the P-value of the optimization model (model 1). The value of P (˂ 0.0001) at 95% confidence level 
shows that the alternative hypothesis that the magnitude of the observed inhibitory activity of Schiff bases against E. 
coli is a direct function of the empirical property (ies) or the theoretical parameter(s) which makes the descriptor of 
the total chemical structure of the molecules under investigation takes preference over the null hypothesis which 
state otherwise. 
 
The applicability domain of the optimization model (model 1) was also defined for test set (Table 9) and training set 
(Table 10) compounds using Euclidean based approach. The results showed that all the compounds fall within the 
applicability domain of the model as their normalized mean distance score fall within the range of 0 and 1. 
 
The result of the QSAR modelling hinted the predominance of the size descriptor ETA-Eta-P-F-L (Local 
functionality contribution EtaF_local relative to molecular size) over other descriptors in the model in influencing 
the anti-salmonella typhi bioactivity of the studied Schiff bases owing to its relatively high numerical coefficient. 
The positive value of the coefficient of the descriptor implies that the minimum inhibitory concentration (MIC) of 
schiff bases is directly proportional to the value of this descriptor. Thus, the inhibitory activity of Schiff bases 
decreases with the increase in value of this descriptor since activity of drug varies inversely with its minimum 
inhibitory concentration. 
 
Molecular size is a factor affecting the distribution of extremely large molecules. There is a high tendency of very 
large molecular sized drugs to be largely confined to the extracellular fluid or plasma compartment affecting they 
distribution in the body [22]. The decrease in bioactivity of the Schiff bases against E. coli with increase in 
molecular size as depicted in the optimization model (Model 1) may be due to the possibility of the large molecules 
been largely confined to the  extracellular fluid or plasma compartment. 
 
RECOMMENDATION  
In the future design of novel Schiff bases as anti-E. coli drug, it is recommended based on this research that the 
compounds should be made less bulkier as possible since molecular size is negatively correlated to the bioactivity of 
the compounds as shown in the GFA derived model. 
 

CONCLUSION 
 

The generated QSAR models, performed to explore the structural requirements controlling the observed 
antibacterial properties, hinted that the biological activities were predominantly affected by size descriptor ETA-Eta-
P-F-L (Local functionality contribution EtaF_local relative to molecular size). The robustness and applicability of 
QSAR equation has been established by internal and external validation techniques. It is envisaged that the wealth of 
information in this QSAR model will provide an insight to designing a novel bioactive nickel-schiff base complex 
that will curb the emerging trend of multi-drug resistant strain of the bacterium, E. coli. 
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