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ABSTRACT

The emergence of multi-drug resistant strain ofHesichia coli (E.coli) has necessitated the explma and
development of newer structural moiety of Schiffelsaas anti- E. coli agents owing to their enormioimbitory
activity against this bacterium. In this presenidst, a Genetic function approximation (GFA) QSARIgsis of
some selected Schiff bases with anti- E. coli ggtivas performed using OD,1D, 2D and 3D descrigtasulting

in the generation of three statistically signifitanodels from which an octa-parametric model wdsected as the
most robust model with’R 0.9622, R,qj= 0.9470, G = 0.9132, R- Q*= 0.049, R - R’/ R =0.00, R — R,*/ R
=0.001, K = 1, K= 0.9622. The optimization model hinted the preitiamce of the size descriptor ETA-Eta-P-F-L
(Local functionality contribution EtaF_local relatt to molecular size) in influencing the observed-&. coli
activity of Schiff bases. It is envisaged that @®AR results identified in this study will offepiontant structural
insight into designing novel anti-E. coli drugsridchiff bases.

Keywords: Escherichia coli, QSAR, descriptors, Schiff badékC.

INTRODUCTION

The role of antimicrobial drugs in decreasing ilseand death associated with infectious diseasasimals and
humans cannot be overemphasized. However, seleptiessure exerted on existing antimicrobial drug ha
orchestrated the emergence and spread of drugamsistraits among disease causing and commerciatibg1].

Of serious concern is the development of resistdnycE.coli strains to the current antibiotics such as ampigil
sulfonamide, gentamicin, streptomycin, ciprofloxacirimethoprim, amoxicillin [2, 3]. E.coli is often times a
commensal bacterium of humans and animals but Betho variants cause intestinal and extraintestifattions,
including gastroenteritis, urinary tract infectiomeningitis, peritonitis, and septicemia [4, 5].iSThrend of
resistance exhibited by this organism poses setlrest to human and animals’ health, necessitatiagearch for
newer antibiotics.

In recent years, Schiff bases have received coraditle attention because of their physiological and
pharmacological activities [6]. This class of origagompounds have also demonstrated significanibitainy
activity against the growth dt. coli [7-10] making them potential drug candidate in feaquest to curb the
dangerous trend of multi-drug resistance posedhisyptathogenic micro-organism.
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Conventional drug discovery and development isattarized by trial and error approach. This is tooasuming,
costly due to the enormous expense of failuresaoficate drugs late in their development and aathie green
chemistry due to enormous waste released into trgomment. QSAR offer important structural insightthe
design of novel anti-microbial drugs by exploringdaharnessing the structural requirements contigpliihe
observed anti-microbial activities as well as pdivg predictive model for bio-activities of poteaitidrug
candidates, reducing the requirement for lengtlogtlg and hazardous laboratory test. QSAR is basedhe
conception that there exists a close relationshtpéen bulk properties of compounds and their nubéecstructure.
Thus, it is the basic tenet of chemistry to idgntifese assumed relationships and then to quahtin allowing a
clear connection between the macroscopic and tbheostopic properties of matter [11].

The aim of this work is to build a statisticallybrst, predictive and rational Genetic function appmation (GFA)
based QSAR model for inhibitory activity of Schifises against E. coli.

MATERIALS AND METHODS

The molecular modeling studies were performed usireg molecular modeling program SPARTAN'14 V1.1.0
(www.wavefun.com). The “Cascade method” of molecwalptimization was invoked for this study [12]. ldethe
molecules were first pre-optimized with the molecuhechanics procedure included in Spartan’14 W@isaftware
and the resulting geometries were further refingdneans of a semi-empirical method (PM3). The ahatthis
method is anchored on the fact that it makes catlicuis less computationally taxing by relegatinigiahgeometry
calculations to less computationally intensive (@odsibly more inaccurate) methods. The lowestgnsiructure
was used for each molecule to calculate their glogsiemical properties (molecular descriptors).

Data set

A data set comprising of series of 41 schiff baagéth inhibitory activities expressed as minimum ibitory
concentration (MIC) again&ischerichia coliwas taken from reported articles [7-10] for thisdy. 70% of the data
set (29 compounds) was used as training set fddibgithe models while the remaining 30% was usetkat set
for external validation of the most statisticallgrificant QSAR model. The notation, structure, Ma@d pMIC of
the compounds are shown in Table 1 below.

Figure 1, 2, and 3 gives the parent structureshef $chiff bases with their experimentally deterrdirenti-
Escherishia coliinhibitory activity in form of Minimum inhibitoryactivity (MIC). R, R, R? and R are the
substituents to the parent structures.

Table 1: Anti-S.typhi activity of the compounds (MIC pg/ml and pMIC)

R1
| \ N
R
Figure 1: parent structure for compound 1-8
Compouniabe R R' [ MIC | pMIC

C1 3-OCH; 4CHs; | 22 | 1.34:
Cc2 3,4-OCH 4-CH; | 18 | 1.556
C3 3,4,5-0CH 4-CH; | 36 | 1.079
C4 3-OCH, 4-OH 4-CH | 12 | 1.806
C5 4-F 4-CH | 64 | 1.806
Cc6 4-Cl 4-CH; | 26 | 2.09:
c7 4-Br 4CHs; | 64 | 1.34:
C8 4-1 4-CH | 124 | 1.556
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H N
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H N
/
HO
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c15 H /N\) 100 | 2.000

HO

H N
/
cle HO 200 | 1.362
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Figure 2: parent structure for compound 17-32

Compound labe] R] R | R? R | MIC | pMIC
C17 H| H|H Cl 23 | 1.362
C18 H| H| H Br 21 | 1.322
C19 H| H]H F 24| 1.38
C20 H| H | cl F 42 | 1.623
C21 H|] H] H|] CcH | 20 | 1301
Cc22 H|] H] H|] ocH]| 39 | 1591
C23 H] H] H|] NQ | 22 | 1.342
C24 H] NQ|H]| NO, | 16 | 1.204
C25 Br|] H| H [¢] 40 | 1.602
C26 Br| H |[H Br 18 | 1.25¢
c27 Br| H| H F 22 | 1.342
C28 Br| H | CI F 20 | 1.301]
C29 Br|] H| H|] CH | 21 | 1.322
C30 Br| H| H] OCH| 24 | 1.38
C31 Br] H| H|] Ng | 17 | 123
C32 Br [NO, | H| NO, | 23 | 1.36:

0]
R N

VX

/
NH

R1
Figure 3: parent structure for compound 33-44
R R MIC(ug/ml) | pMIC
C33 | H N(CHs)2 2C 1.301
C34 | H N(CzHs), 16 1.20¢
C35| H N(GHs). 20 1.301
c36 | H N(CsH11)2 19 1.279
ca7 | H N\ NH 29 1.342

87
Available online at www.scholarsresearchlibrary.com




John Philip Ameji et al J. Comput. Methods Mol. Des., 2015, 5 (4):84-96

c38| H| X N 26 1.415
Cag [ Br N(CHa): 16 1,202

Ca0 | Br N(GHs); 18 1.255
cail Br N(GHs), 17 1.03

ca2 [ Br N(GHu2)s 19 1.279
ca3 | Br N NH 21 1322
cas| Br| & N 27 1.431

Model building

The computed descriptors were subjected to regmesanalysis with the experimentally determined mimin

inhibitory concentration on logarithmic scale (pMI&s the dependent variable and the selected gessrias the
independent variables using Genetic function appration (GFA) method in Material studio software develop
the optimization model, 29 samples were includeth@training set. The number of descriptors inrégression
equation was set to 5, and Population and Genaratéye set to 1,000 and 5,000, respectively. Thebau of top
equations returned was 5. Mutation probability via$, and the smoothing parameter was 0.5. Thestita
significance of the generated models were asséssstl on Friedman’s LOF and the optimum model wkted
based on this parameter.

Model Validation

A reliable validation procedure is required in arde confirm the existence of chance correlatioaswell as
ascertaining the fitting ability, stability, religiby and predictive ability of the developed moslelThe optimum
model was validated and its validation parametenewompared with the standards shown in Tabld®wbe

Table 2 Validation metrics for a generally acceptable QSARnodel

S/r | Metric symbo Name Threshol
1 Coefficient of determination >0.6
2 Q LOO cross validation coefficient >0.5
3 Rored External test set's coefficient of determinatipn >0.6
4 R-Q Difference between®and 3 <0.3
5 F value Variation ratio High
6 R - R’/ R | Golbraikh and Tropsha condition <0.1
7 R - Ry’ /R | Golbraikh and Tropsha condition <0.1
8 Kand K Intercept 0.85kork<1.15

Source: Roy et al.; Ravinchandran et al.; Golbraékid Tropsha [13, 14, 15]

Internal validation parameters
This validation is done using the data that crettbtedmodel. The various internal validation pararetnvoked in
this study are presented thus;

R? (the square of the correlation coefficient):describes the fraction of the total variationihttred to the model.
The closer the value of?Rs to 1.0, the better the regression equationagplthe Y variable. Ris the most
commonly used internal validation indicator anéxpressed as follows:

2_ 4 S(Yobs—Ypred)?
R = Y (Yobs—Ytraining)? (1)

Where, Yobs; Ypred ;Ytraining are the experimemadperty, the predicted property and the mean éxgertal
property of the samples in the training set, repely [16].
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Adjusted R® (R%q): R value varies directly with the increase in numbéregressors i.e. descriptors, thus, R
cannot be a useful measure for the goodness ofIrfindeherefore, R is adjusted for the number of explanatory
variables in the model. The adjustetifdefined as:

n-1 _ (n-1)R?-P

R%q= 1-(1 — R?) " ()
Where p = number of independent variables in thdehd.7]

Q? (Leave one out cross validation coefficient)The LOO cross validated coefficient3Q@s given by;
@=1 _E(rp-1)? 3)

(y-ym)?

Where Yp and Y represent the predicted and obsesetidity respectively of the training set ang, the mean
activity value of the training set [17].

Variance Ratio (F): this parameter is used to judge the overall sigaifce of the regression coefficient. It is the
ratio of regression mean square to deviations regaare defined as:

Y (Ycal-ym)?
- p
F= /Z(Yobs—llcal)2 (4)

N-P-1

Where Yys stands for the observed response value, whilg i¥ the model-derived calculated response apdsY
the average of the observed response values. VhkI€ has two degrees of freedom: p, N — p — 1.&dweputed F
value of a model should be significant at p < 0A%igh F value is an indication that the regressioefficients are
significant [13].

Standard error of estimate (s):Low standard error of estimate is an indicatioraajood model. It is defined as
follows:

S = \/(Yobs—Ycal)Z )

N-P-1
Its degree of freedom is N-p-1 [13].

Leave one out cross validation (LOOCV)in this cross validation approach, the model iseedly refit leaving
out a single observation and then used to derpeediction for the left-out observatiorFor the model to have an
excellent prediction ability, ©must be> 0.5 andR? — Q? value should not exceed 0.3. The equation for €V i

2_ 4 PRESS
Q=1 Y (Yi—Ym)?2 (6)

PRESS 3, (Ypred,i — Yi) 7
Q? = LOOCYV cross validation coefficient?R coefficient of determination.

Yiis the data value(s) not used to construct the @det) PRESS is the predictive residual sum of tuagesym
= mean of the experimental bioactivity (pMI@pred, i is the predictedi [14].

Metrics for external validation
External validation of QSAR model is performed irder to ensure the predictability and applicability the
developed QSAR model for the prediction of untestezlecules. The various external validation mettised in
this work are highlighted thus:

Predictive R? (R? yeq): R?pred. is termed the predictive’ Bf a development model and is an important paramet

that is used to test the external predictive abilfta QSAR model. The predicted Ralue is calculated as follows;
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S[Yobs(test)-Ypred(test)]?
(8)

2 —
R pred. =1 Y[Yobs(test)—Ym(training)]?

Y preditesy N Yops(resy iNdicate predicted and observed activity valuespeetively of the test set compounds and
Y m(raining) iNdicates mean activity value of the training[44f.

Golbraikh and Tropsha’s criteria: according to Golbraikh and Tropsha, models areidensd satisfactory, if all
the following conditions are met.

(@) R%est> 0.5

bR -R*/R)<0.1

(c) (RP- R/ R)<0.1

(d) 0.85<k<1.15

(e) 0.85<k <1.15

Parameters Rand R? are the squared correlation coefficients betwéenabserved and predicted values of the
compounds with and without intercept, respectiv@lye parameter i bears the same meaning witlf Rut uses
the reversed axes. K is the intercept of the pldhe observed and predicted values of the compoand K the
reversed axes intercept [15].

RESULTS AND DISCUSSION

The equations are the QSAR mathematical models\wtd terms are the molecular descriptors. Detaiédighition
of the descriptors that appeared in the modelgigen Table 5.

Table 3: GFA derived QSAR models for the ka of the selected POPs

Model Equation Definition of terms

pMIC = 0.028330211 = X7 X7 : ATSm5

+0.754079982 * X32 X32 :VP-3

1 — 5.518138173 * X57 X57 : ETA_EtaP_F
+47.796805665 * X62 X62 : ETA_EtaP_F_L
+ 0.494140811 = X73 X73 :nHBDon
—0.146023548 * X144 X144 : RNCS
—0.000885791 * X149 X149 : GRAV-1
—0.069505442 * X195 X195 : Wlambda2.volume

—8.198314822

pMIC = 0.034301705 * X7 | X7 : ATSm5
—6.239202363 * X57 X57 : ETA_EtaP_F
2. +36.506138720 * X62 X62:ETA_EtaP_F L
+ 0.564599476 * X73 X73 :nHBDon
+ 0.025662395 * X80 X80 : nAtomP
—0.158090685 * X144 X144 : RNCS
—0.075859857 % X195 X195 : Wlambda2.volume
+0.026847150 * X208 X208 : Wlambda2.eneg
—4.155706232
pMIC = 0.030272104 * X7 X7 : ATSm5
3. +0.019990735 * X47 X47 : ETA_Beta_ns
— 6.413499672 * X57 X57: ETA_EtaP_F
+33.104729852 * X62 X62 :ETA_EtaP_F_L
+ 0.538824561 * X73 X73: nHBDon
+ 0.030292997 = X80 X80 : nAtomP
—0.146988859 * X144 X144 : RNCS
—0.083336920 * X195 X195 : Wlambda2.volume
+0.025485956 * X208 X208 : Wlambda2.eneg

—3.293980187
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Table 4: Validation Parameters of the models

S/n Parameters Model 1 Model 2 model 3

1 | Friedman LOF 0.0222180( 0.02241300  0.02297%00
2 | R-squared 0.9621680 0.96183600  0.97122700
3 | Adjusted R-squared 0.94703500  0.94657000  0.9%%%98
4 | Cross validated -square: 0.9131790 0.9173090 0.9441800

5 Significant Regression Yes Yes Yes

6 Significance-of-regression F-value 63.58191400 .0@®367100| 71.26126300

7 | Critical SOR F-value (95%) 2.4509210p0 2.4509210®.42509900

8 Replicate points 0 0 0

9 | Computed experimental error 0.00000000 0.000000®.00000000

10 | Min expt. error for no-significant LOF (95% | 0.0668840 0.0671770 0.0595390

The GFA algorithm makes use of a population of marogels rather than generating a single model.mbdels
are scored using Friedman's “lack of fit” (LOF) rmeee as the evaluation function [18, 19]. Thusgbasn model
with the least LOF score, model 1 is selected a®ghimization model for predicting the MIC of SifHiases.

The symbols and detailed definition of the desorpthat appeared in the models depicted in Table given in
Table 5 below.

Table 5: Detailed definition of descriptors

S/n | Descriptor symb Definition
1 | ATSm5 ATS autocorrelation descriptor, weightedsbgled atomic mass
2 | VP-3 Valence path, order 3
3 | ETA EtaP_F Functionality index EtaF relative tolecular size
4 ETA EtaP_F L Local functionality contribution Etdocal relative to molecular size
5 | ETA Beta_ns A measure of electron-richness ofribiecule
6 | nHBDor Number of hydrogen bond donc
7 RNCS Relative negative charge surface area -t negmtive surface area * RNCG
8 | GRAV-1 Gravitational index of heavy atoms
9 | Wlambda2.volume Directional WHIM, weighted by vder Waals volumes
10 | Wlambda2.eneg Directional WHIM, weighted by Nkéh atomic electronegativites
11 | nAtomP Number of atoms in the largest pi system
5
R?2=0.9622...
4 .."".
3
S o
2 2 _.,‘~ ® pMIC
© l ......... i
g 1 .‘., Linear (pMIC)
<< e Linear (pMIC)
0.
2 -1 0 1 2 3 4 5
-1
-2

Predicted pMIC

Figure 4: Plot of actual pMIC against predicted pMIC
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Figure 5: Residual plot of model 1

Table 6 gives the predicted pMIC (Ypred.) of thei-&h coli Schiff bases used as external test set for model
validation obtained by substituting the values e tlescriptors in column 3,4,5,6,7,8,9, and 10 thoptimum
QSAR model (model 1). Column 1 gives the experiraintdetermined pMIC (Y¥,9 values of the test set
compounds; Ym is the mean pMIC of the trainingcsghpounds.

Table 6: External validation of Model 1

Testcpd| ¥ | ATSm5 VP-3 ETA EtaP_H ETA EtaP_F |L nHBDgn RNC§S
C2 1.255| 22.159]  2.8042§ 0.89724 0.29502 0 5.734714
C6 1.41% | 14.45( | 2.51864! 0.832¢ 0.2883¢ 0 3.79311L:

C17 1.362] 33.242] 3.183458 1.04066 0.31 0 5.834262
C20 1.623| 38.266] 3.297687 1.08743 0.31395 0 5.00744
C24 1.204] 48.912] 3.562283 1.3036 0.33392 0 3.733877
C29 1.322| 44.505] 3.686629 0.99604 0.2931 0 5.701515
C3z 1.36: | 62.217 | 4.11008! 1.2850! 0.315} 0 4.58810!
C3t 1.301 | 70.50: | 6.43187! 1.2868¢ 0.3011: 0 2.14915!
C37 1.342| 55.530] 5.582728 1.04743 0.23984 2 1.48662
C39 1.204[ 65.475] 5.106156 1.07431 0.26108 1 15475
c41 1.23 | 84.472] 6.976827 1.25252 0.25711 1 0.674175
C43 1.322| 68.835]  6.13053 1.03114 0.22901 2 1.416237
Testset| GRAV-1] Wilambda2.volume o [ YM | (YobeYpred® | (YobeYm)®

C2 1.70E+03 1.908207 1.2p 153 0.001445 0.073441

[ 1.45E+03 1.205697 138 153 0.001262 0.012321

C17 | 2.10E+03 0.06367 1.5p 153 0.019272 0.026896

C20 | 2.23E+03 2.347013 149 153 0.016399 0.009409

C24 | 2.69E+03 1.980924 158 153 0.139091 0.103684

C29 | 2.29E+03 2.650138 131 153 5.11E-0 0.041616

C32 | 2.95E+03 0.360036 135 153 0.00011f 0.026896

C35 | 3.64E+03 15.41845 133 153 0.000997 0.050625

C37 | 3.03E+03 1.218562 1.28 153 0.00388} 0.033856

C39 | 3.01E+03 5.518675 1.27 153 0.004778 0.103684

C41 | 4.01E+03 6.505369 122 153 0.00013p 0.087416

C43 | 3.29E+03 1.377386 140 153 0.00603f 0.041616

> =0.193466] > =0.61166

The predicted Rvalue for the test set compounds is calculatedigussie formulae in equation 8.
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Thus, Ryeq=1— % =0.6837

Table 7: Golbraikh and Tropsha external validationparameters for model 1

s/n | Paramete | Value
1 r’ 0.962:
2 re 0.9608
3 [ 0.9622
4 k 1
5 K 0.9622

Based on the parameters above;
0.9622-0.9622

R — R/ R = 222225522 _ 9o
, 0.9632
R?— Ro?/ R ==22222200 = 0,001

0.9622

Table 8: Comparison of Yobs (training) and Ypred.(taining) of model 1

Name | Yone Y prec Residus
C1 1.342| 1.39333] -0.0513
C3 1.556| 1.494089 0.06191
C4 1.079| 0.995213 0.0837§
C5 1.806| 1.899129 -0.0931
C7 1.80¢ | 1.87693 | -0.0709:
c8 2.093| 1975795 0.11720

Cl2 | 2.301] 2.263063 0.03793
C13 | 2.301| 2.318343 -0.0173
Cl4 | 2.398| 2.312507 0.08549
C15 2 2.062778 -0.0627
Cl€ | 1.362 | 1.43383. | -0.0718:

C18 | 1.322| 1.37101] -0.0490
C19 1.38 | 1.293494 0.08650
C21 | 1.301] 1.35225¢ -0.0512
C22 | 1591] 1.551997 0.0390¢
C23 | 1.342] 1.410229 -0.0682
C25 | 1.602| 1.43812% 0.16387
C26 | 1.255| 1.260037 -0.0050
C27 | 1.342] 1.35206 -0.0100
C28 | 1.301] 1.355501 -0.0544
C30 1.38 | 1.329319 0.05068
C31 1.23 | 1.368738 -0.1387
C33 | 1.301] 1.269841 0.03115
C34 | 1.204| 1.166293 0.0377¢
C36 | 1.279] 1.217333 0.061664
C38 | 1.415| 1.416018 -0.0010
C40 | 1.255| 1.310682 -0.0556)
C42 | 1.279] 1.293169 -0.0141
C44 1.431] 1472874 -0.0418

W g W

FTobhNa

=

NP oW oo

NJoOoNJgJgo PR

Euclidean based applicability domain for the optimum QSAR models:

Applicability domain (AD) is the physicochemicalyisctural or biological space, knowledge or infotima on

which the training set of the model has been deeslo The resulting model can be reliably applicdbleonly

those compounds which are inside this domain. ltaised on distance scores calculated by the Eadidestance
norms. At first, normalized mean distance scoretrfaining set compounds are calculated and thelsesaianges
from 0 to 1 (O = least diverse, 1 = most diverséntng set compound). Then normalized mean distanoee for
test set are calculated, and those test compouiitis saore outside 0 to 1 range are said to be deittie
applicability domain [20].

The Euclidean based applicability domain for testl araining set compounds are shown in Tables 9 Hhd
respectively.
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Table 9: Euclidean based applicability domain for &st set compounds

Testcpd.| Distance Score  Mean Distarjce  NormalizedrivDistance|
Cc2 19999.12 689.625 0.172
C6 24832.34 856.288 0.325

C17 15298.04 527.519 0.024
c2c 14590.5! 503.12! 0.007

C24 18687.86 644.409 0.131
C29 14574.45 502.567 0.001
C32 23492.69 810.093 0.283
C35 39427.3 1359.562 0.787
C37 25008.91 862.376 0.331
C3¢ 24635.3! 849.49! 0.31¢

C41 49658.2. 1712.35: 1.11

C43 30733.76 1059.785 0.512

Table 10: Euclidean based applicability domain fotraining set compounds

Training set cpd| Distance Scote  Mean Distance  NliwathMean Distance
C1 23621.15 814.522 0.287
C3 17317.72 597.163 0.087
C4 21392.38 737.668 0.216
C5 25083.4 864.945 0.333
c7 22150.96 763.826 0.24
c8 21050.16 725.868 0.205
Cl2 14551.67 501.782 0
C13 14636.81 504.717 0.003
C14 24082.7 830.4¢ 0.301
C15 19400.24 668.974 0.153
Cl6 27512.74 948.715 0.41
C18 14601.45 503.498 0.002
C19 15367.83 529.925 0.026
Cc21 15997.68 551.644 0.046
C2z 14878.5! 513.05¢ 0.01
C23 14600.75 503.474 0.002
C25 14741.56 508.33 0.006
C26 15793.31 544.597 0.039
c27 14691.04 506.588 0.004
C28 15794.43 544.636 0.039
C3C 15159.6! 522.74 0.01¢
C31 17089.1( 589.28: 0.0¢
C33 17839.9 615.169 0.104
C34 19880.23 685.525 0.169
C36 39149.11 1349.969 0.778
C38 25578.98 882.034 0.349
C4C 27056.2 932.97! 0.39¢
C4z 46174.9: 1592.23! 1
C44 31653.11 1091.486 0.541

Table 11 gives the P-value of the optimum GFA d=liQSAR model at 95% confidence level. SS, DF, &8, F
in the table represents sum of squares, degreeeddm, mean square and F-ratio respectively.

Table 11: P-value of the model at 95% confidenceuvel

Source SS DH MS F p-value
Difference | 3.5803 8 0.4475] 63.4162 <0.0001
Error 0.1411| 20| 0.007057
Null model | 3.7214| 28

Tables 3, 4, and 5 give the GFA derived QSAR mottaigpredicting minimum inhibitory concentration (®) of
Schiff bases, validation parameters of the modats, detailed definition of the descriptors usedhe models
respectively. Based on the validation parametdrs, dcta-parametric model (model 1) was selectedhas
optimization model for predicting the MIC of Schiffses. The Genetic Function Algorithm derived QSAdtlel is
good agreement with the minimum standard showrainl@2 as R= 0.9622, R,;= 0.9470, @ = 0.9132, R)e4 =
0.6837 and the Golbraikh and Tropsha criteria édaust QSAR model were also met, the result in T@lenfirms
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this. The predictability of model 5 evidenced by the low residual values observedahle 8 which gives the
comparison of observed and predicted MIC of theemdes. Also, the plot of predicted pMHEgainst observed
pMIC shown in Figure 1 indicates that the modelvid! trained and it predicts well the pMIC of thenspounds.

Furthermore, the plot of observed pMIC versus rediggMIC (Figure 2) indicates that there was ndesysc error

in model development as the propagation of resgdwak observed on both sides of zero [21].

Table 11 gives the P-value of the optimization nigd®del 1). The value of R(0.0001) at 95% confidence level
shows that the alternative hypothesis that the ritadm of the observed inhibitory activity of Schifases againé.
coli is a direct function of the empirical propertysfier the theoretical parameter(s) which makesidseriptor of
the total chemical structure of the molecules urideestigation takes preference over the null higpsis which
state otherwise.

The applicability domain of the optimization modelodel 1) was also defined for test set (Tabler@) taaining set
(Table 10) compounds using Euclidean based apprddehresults showed that all the compounds fathiwithe
applicability domain of the model as their normatiznean distance score fall within the range aidh

The result of the QSAR modelling hinted the predwmnice of the size descriptor ETA-Eta-P-F-L (Local
functionality contribution EtaF_local relative toofecular size) over other descriptors in the madehfluencing
the anti-salmonella typhi bioactivity of the studli8chiff bases owing to its relatively high numaticoefficient.
The positive value of the coefficient of the degtor implies that the minimum inhibitory concentoat (MIC) of
schiff bases is directly proportional to the valfethis descriptor. Thus, the inhibitory activity 8chiff bases
decreases with the increase in value of this deeerisince activity of drug varies inversely witis iminimum
inhibitory concentration.

Molecular size is a factor affecting the distriloutiof extremely large molecules. There is a higidémcy of very
large molecular sized drugs to be largely confiteethe extracellular fluid or plasma compartmerieeting they
distribution in the body [22]. The decrease in bioaty of the Schiff bases again&. coli with increase in
molecular size as depicted in the optimization nh@sledel 1) may be due to the possibility of thegea molecules
been largely confined to the extracellular fluidptasma compartment.

RECOMMENDATION

In the future design of novel Schiff bases as Bnttoli drug, it is recommended based on this researdhthiba
compounds should be made less bulkier as possitde molecular size is negatively correlated tolitmactivity of
the compounds as shown in the GFA derived model.

CONCLUSION

The generated QSAR models, performed to explore dtmactural requirements controlling the observed
antibacterial properties, hinted that the biolobaivities were predominantly affected by sizectgtor ETA-Eta-
P-F-L (Local functionality contribution EtaF _locedlative to molecular size). The robustness andicgiplity of
QSAR equation has been established by internakatatnal validation techniques. It is envisaged tha wealth of
information in this QSAR model will provide an ighit to designing a novel bioactive nickel-schiffbacomplex
that will curb the emerging trend of multi-drugistant strain of the bacteriurg, coli.
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