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ABSTRACT

In the present work, quantitative structure activielationship studies were performed to exploegtructural and
physicochemical requirements of 1-[(2-hydroxyetharethyl]-6-(phenylthio)thymine (HEPT) derivatives fanti-
HIV activity. QSAR models have been developed w$eriy, electronic and thermodynamic descript@atistical
techniques like genetic function approximation-ipiétlinear regression (GFA-MLR) as the data pregessing
step were applied to identify the structural ang/gihochemical requirements for anti-HIV activithelgenerated
equations were statistically validated using leave-out technique and the best models were alspeaeld to
leave-5-out cross-validation. The quality of fitdapredictive ability of equations obtained from GWAR is of
acceptable statistical range (explained varianc®df74%, while predicted variance of 74.14%). Tbleustness of
the best models was checked by Y-randomizatiommesidentified as good predictive models. Thefaoefit of
ALogP, ATSm5 and CrippenLogP shows that the agtinitreases with increase in ALogP, ATSm5 and @ripp
LogP of molecules. The coefficient of C2SP3, VPEs#l,ETA_AlphaP, ETA Epsilon_1, nAtomP, Petitidamber
and Wlambda2.unity shows that the activity decreaséh increase in volume and Wlambdal.polar of the
molecules is detrimental to activity. The informatgenerated from the present study may be usetbkidesign of
more potent HEPT derivatives as anti HIV agents

Keywords: Anti-HIV-1, QSAR, Validation, Internal validatiorkxternal validation, Randomization, Applicability
domain.

INTRODUCTION

Human immunodeficiency infection (HIV) is the chiefason for (AIDS). In the most recent decades, eraos
anti-HIV medications have been created, yet thetiese medications have issues like the genuifevarable
symptoms of the accessible medications and theofisgedication resistance, in light of the factttbgploration to
find and create extra novel non-nucleoside revaescriptase inhibitors (NNRTIS) drugs with difet atomic
frameworks for more viable treatment and potei@lS prevention [1].

Quantitative structure activity relationships (QS$AH2] have turned into an imperative part in tlenpound
outline and movement process since they speaknboich less expensive, quick different option for thedium
throughput in vitro and low throughput in vivo maess which are by and large limited to later in theelation
course [3]. A QSAR is basically a numerical compani that is resolved from an arrangement of moeculith
known exercises utilizing computational methododsgj4]. The careful type of the relationship in th&ldle of
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structure and action can be resolved utilizing asoement of measurable techniques and process$edtamic
descriptors and this mathematical statement is themd to foresee the action of new particles. EQ8ARs
spearheaded by Hanch and Fugita [5, 6] comprisedaoferately little number of molecules of a givéreimotype
being utilized to infer a basic direct comparisoridresee the following particle in the arrangentertie combined.
The upside of this methodology was that the termsthie mathematical statement were for the most part
straightforward and effectively interpretable, whihe sorts of atoms being anticipated were formniust part
fundamentally the same to those that were at tbit ncorporated, giving the client more prominémnist in the
model expectations. Conversely, over the previatade an expanding number of QSARs have been aecoiom
taking into account extensive, assorted datasetsnally termed worldwide models, which are viewed raore
dependable at anticipating differing structurent@SARs based on little datasets of low differeri@ges]. A few
QSAR Studies have been performed by different orsatvhich give important bits of knowledge in dgofation
and advancement of HIV-1RT inhibitors [9, 10]. Apiace of progressing exertion the present wordasned to
infer some factually huge QSAR models for HEPT &libses to associate against HIV-1 RT action t® it
physicochemical properties. The outcomes got ma tadfurther plan and improvement of novel antweiral
specialism.

MATERIALS AND METHODS

Data set

In present studies, a series of HEPT derivativeggonted by [11] as potent anti-HIV, was selectede ®Gundred and
six compounds were divided (using Kennard-Stonedieln) into training and test set, the formerc@tsisting of
seventy four compounds and the remaining thirty tempounds were taken as the test set.

Biological activities
Structures of all the compounds used for QSAR aislgnd their anti-HIV activity (EC50, molar contration of
the drug required achieving @0protection of MT-4 cells against the cytopathiteef of virus) are given in Table
1. For every compound of the series, the experiaterdlues of biological activity are used in thegative
logarithmic scale (pEC50) to achieve normal disttiidmn.

O
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Figure 1: The chemical structure of the compoundssed in this study

Table 1: The observed activity data of the compourslused in this study

No. R1 R2 R3 X| Obs.| Ypred Residupl
1* 3-CN Me CH,OCH,CH,OH O | 5.00C | 3.97¢ 1.021
2 3-COMe Me CHOCH,CH,OH O | 5.140| 5.494 -0.354
3* | 3-COOMe Me CHOCH,CH,OH O | 5.100| 5.777 -0.677
4 3,5-C} Me CHOCH,CH,OH O | 5.890| 6.232 -0.342
5 3,5-Me Me CHOCH,CH,OH O | 6.590| 6.092 0.498
6 3-OMe Me CHOCH,CH,OH O | 4.660| 4.389 0.271
7 3-OH Me CHOCH,CH,OH O | 4.090| 4.498 -0.408
8* 3-NO, Me CHOCH,CH,OH O | 4.470| 3.618 0.852
9 3- Me CHOCH,CH,OH O | 5.000f 5.157 -0.157
10 3-Br Me CHOCH,CH,OH O | 5.240| 5.598 -0.358
11 3-Cl Me CHOCH,CH,OH O | 4.890| 5.060 -0.170
12 3-F Me CHOCH,CH,OH O | 5.480| 4.788 0.692
13 3-Ck Me CHOCH,CH,OH O | 4350 4.097 0.253
14 3-t-Bu Me CHOCH,CH,OH O | 4.920| 4.882 0.038
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15 3-Et Me CHOCH,CH,OH O | 5570] 4.901 0.669
16 3-Me Me CHOCH,CH,OH O | 5.590| 5.366 0.224
17 2-OMe Me CHOCH,CH,OH O | 4.720| 5.285 -0.565
18 2-NO, Me CH,OCH,CH,OH O | 3.85( | 4.52¢ -0.67¢
19 2-Me Me CHOCH,CH,OH O | 4.150| 4.434 -0.284
20 H Et CHOCH,CH,OH O | 6.920| 6.688 0.232
21 H i-Pr CHOCH,CH,OH O | 7.200| 6.819 0.381
22 3,5-Me Et CHOCH,CH,OH O | 7.890| 6.730 1.160
23 3,5-Me i-Pr CHOCH,CH,OH O | 8.570| 7.658 0.912
24 3,5Cl, Et CH,OCH,CH,OH O | 7.85( | 7.35¢ 0.49¢
25 H Me CHOCH,CH,OH O | 5.150| 4.842 0.308
26 H | CHOCH,CH,OH O | 5.440| 5.667 -0.227
27 H CH=CPH CH,OCH,CH,OH O | 6.070| 6.649 -0.579
28 4-F Me CHOCH,CH,OH O | 3.600| 3.822 -0.222
29 4-Cl Me CHOCH,CH,OH O | 3.600| 3.466 0.134
30 4-OH Me CHOCH,CH,OH O | 3.560| 3.562 -0.002
31 3-CONH Me CHOCH,CH,OH O | 3.510] 2.899 0.611
32 H COOMe CHOCH,CH,OH O | 5.180| 4.844 0.336
33 H CONHPh CHOCH,CH,OH O | 4.740| 4.160 0.580
34* H SPh CHOCH,CH,0OH O | 4840| 5.119 -0.279
35 H CCH CHOCH,CH,OH O | 4.740| 5.010 -0.270
36 H CCPh CHOCH,CH,OH O | 5.470| 4.990 0.480
37* H COCHMe CH,OCH,CH,OH O | 4.920| 5.908 -0.988
38 H COPh CHOCH,CH,OH O | 4.890| 4.959 -0.069
39* H CCMe CHOCH,CH,OH O | 4.720| 5.862 -1.142
40 H F CHOCH,CH,OH O | 4.000| 4.326 -0.326
41 H Cl CHOCH,CH,OH O | 4520| 3.710 0.810
42 H Br CHOCH,CH,OH O | 4.700| 4.637 0.063
43 2-Cl Me CHOCH,CH,OH O | 3.890| 3.813 0.077
44 3-CHOH Me CHOCH,CH,OH O | 3.530| 3.726 -0.196
45 4-NQ Me CHOCH,CH,OH O | 3.720| 3.691 0.029
46 4-CN Me CHOCH,CH,OH O | 3.600| 4.092 -0.492
47 4-OMe Me CHOCH,CH,OH O | 3.600| 4.514 -0.914
48 4-COMe Me CHOCH,CH,OH O | 3.960| 4.230 -0.270
49* 4-COOH Me CHOCH,CH,OH O | 3.450| 3.418 0.032
50* 3-NH, Me CHOCH,CH,OH O | 3.600| 4.267 -0.667
51 H Pr CHOCH,CH,OH O | 5.470| 6.296 -0.826
52 4-Me Me CH,OCH,CH,OH O | 3.66( | 4.64¢ -0.98¢
53* H CH=CH CH,OCH,CH,OH O | 5.690| 6.617 -0.927
54 H CH=CHPh CRHOCH,CH,OH O | 5.220| 5.520 -0.300
55* H CH,Ph CHOCH,CH,OH O | 4370| 6.843 -2.473
56* H Me CHOCH,CH,OAc O | 5.170| 5.169 0.001
57* H Et CHOCHMe O | 7.720| 6.630 1.090
58* H Et CH,CH,PF O | 8.23( | 8.62¢ -0.39¢
59 3,5-C} Et CHCH;Me O | 8.130| 8.689 -0.559
60 H Me CHOCH,CH,OGHi; | O | 4.460| 4.666 -0.206
61 H Me CHOCH,CH,OCH,Ph | O| 4.700{ 5.730 -1.03
62 H Me H O| 3.600[ 3.875 -0.275
63 H Me Me O| 3.820 3.925 -0.105
64 H c-Pr CH,OCH;Me O | 7.00C | 6.95¢ 0.04¢
65 H Et CH,0-i-Pr O | 6.47C | 6.43( 0.04
66* H Et CHO-c-Hex O| 5.400 5.177 0.223
67 H Et CHOCH,-c-Hex O| 6.350[ 5.943 0.407
68 H Et CHOCH,CH,Ph O| 7.020{ 7.041 -0.021]
69* H Me CH,OMe O | 5.68( | 5.72] -0.041
70 H Me CH,OBuU O | 5.33( | 5.44: -0.11¢
71* H Me Et O| 5.660[ 5.41§4 0.244
72 H Me Bu O| 5.920 5.611 0.309
73 H i-Pr CHOCHMe O | 7.990| 7.496 0.494
74* H i-Pr CHOCH,Ph O| 8.510{ 8.426 0.084
75* 3,5-Mg Et CHOCH,Ph O | 8.550| 8.617 -0.067|
76 3,5-Me; Et CH,OCH,Me O | 8.24( | 8.68( -0.44
7* H Me CHOCH,CH,OMe O | 5.060f 5.214 -0.154
78 H Me CHOCH,CH,OCOPh | O| 5.120 5.023 0.097
79 H Me CHOCHMe O | 6.480| 5.704 0.776
80* H Me CHOCH,CHCI O | 5.820| 5.569 0.251
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81 H Me CHOCH,CH;N; O | 5.240| 4.924 0.316
82 H Me CHOCH,CH,F O | 5.960| 5.773 0.187
83 H Me CHOCH,CH,Me O | 5.480| 6.084 -0.604
84 H Me CH,OCH,PF O | 7.06C | 6.71¢ 0.34:
85* H Et CHOCH:Me S | 7.580| 7.289 0.291
86 H i-Pr CHOCHMe S | 7.890| 8.026| -0.136
87* H i-Pr CHOCH,Ph S| 8.140[ 9.365 -1.225
88* 3,5-Cb Et CHOCHMe S | 7.890| 8.576 -0.686
89 H Et CHO-i-Pr S| 6.660[ 7.041 -0.381
90* H Et CH,O-c-Hex S | 5790 | 5.75i 0.03¢
91 H Et CHOCH,-c-Hex S| 6.450 6.979 -0.529
92 H Et CHOCH,CsH4(4-Cl) S| 7.920| 6.602 1.318
93* H Et CHOCH,CH,Ph S| 7.040] 7.855 -0.815
94 H c-Pr CHOCHMe S | 7.020| 7.542 -0.522
95 3,5-Me Me CHOCH,CH,OH S | 6.660| 6.629 0.031
96* H Pr CHOCH,CH,OH S | 5.000| 6.794 -1.794
97 3,5-Me i-Pr CHOCH,CH,OH S | 8.300| 8.597 -0.297
98* H Et CHOCH,Ph S| 8.090] 8.700 -0.61
99 3,5-Me Et CHOCH,Ph S| 8.140] 9.26§ -1.128
100* 3,5-Me Et CHOCHMe S| 8300 8.171 0.129
101 H Et CHOCH,CH,OH S | 6.960| 6.524 0.436
102 H i-Pr CHOCH,CH,OH S | 7.230| 7.355 -0.125
103* 3,5-Me Et CHOCH,CH,OH S | 8.110| 7.584 0.526
104* 3,5-C} Et CHOCH,CH,OH S | 7.370| 7.936 -0.566
105 H Me CHOCH,CH,OH S | 6.010| 5.318 0.692
106* H CHCH=CH, CH,OCH,CH,OH O | 5.600| 6.594 -0.994
*Test set

Computational Details

The two-dimensional structures of molecules weeswdrin Spartan’14 version 1.1.2 [12] software, @nted to 3D
and also many numbers of theoretical molecular rifgecs such as HOMO, LUMO, Aqueous Energy, Energy,
volume, Gibb’s Energy, log P, formation enthalpydasther quantum descriptors have been computed tivith
Spartan’14 version 1.1.2. ALOGP Descriptor, APokBriptor, Aromatic Atoms Count Descriptor, Aromaionds
Count Descriptor, Atom Count Descriptor and othesatiptors have been computed with the PaDEL-Degtscs
version 2.18 [13]. These descriptors used to modelQuantitative structure—activity relationship BEPT
derivatives. The equilibrium geometries of all HE®&rivatives were fully optimized using the DFT/B&R
method [14] with the 6-311G* basis set. No molecsiammetry constraint was applied, rather full opgation of

all bond lengths and angles was carried out. Theulzded descriptors for each molecule are sumredriz Table

2. The GFA-multiple linear regression statisticht@ique is used to study the relation between omemtdent
variable and several independent variables. It isaghematic technique that minimizes the differenibetween
actual and predicted values. The GFA-multiple linesgression model (GFA-MLR) was generated using th
software Material Studio to predict EC50.

Model development

A model's predictive accuracy and confidence fdéfedint unknown chemicals differs according to heell the

training set signifies the unknown chemicals anev liobust the model is in generalizing beyond thenaistry

space defined by the training set. So, the seleafahe training set is significantly important @SAR analysis.
Predictive potential of a model on the new dataisehfluenced by the similarity of chemical naturetween
training set and test set [15]. The test set mddscwill be predicted well when these moleculesvea®y similar to

the training set compounds. The reason is thatrtbdel has represented all features common to #ieing set
molecules. In this paper, for the development ofdel® for a particular data set, Kennard-Stone nuketlvere

employed. This approach (Kennard-Stone method)readinat the similarity principle can be employed the

activity prediction of the test set. Based on Kedratone, each data set was divided into trainimg) test sets. In
each case, 70% of the total compounds were selestédhining set and remaining 30% were selectagsisset.
Models were developed from a training set using @HAR and the best model was selected from the fatjou of

models obtained based on lack-of-fit score. Thectel model was then validated internally by leane-out
method and then externally by predicting the amtivialues of the corresponding test set. Basedhenrésults
obtained from multiple models which are deriveddohsn different combinations of training and tetsswe have
tried to evaluate performance of different validatparameters.
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Statistical methods

GFA

In GFA, a particular number of equations (set & b§ default) are generated randomly. Then p appeas of
“parent” equations are chosen randomly from thtso§d 00 equations and “crossover” operations vwendormed
at random. The number of crossing over was setdigult at 5000. The goodness of each progeny emuéi
assessed by Friedman’s lack of fit (LOF) scorecWlig given by following formula:

LSE

=)

LOF = 1)

Where LSE is the least-squares error, ¢ is the mummbbasis functions in the model, d is smootlpagameter, p is
the number of descriptors and m is the number e€pfations in the training set. The smoothing patam which
controls the scoring bias between equations oéwdfit sizes, was set at default value of 0.5 andl GBssover of
5000 were set to give reasonable convergence. diiggH of equation was fixed to twelves terms, thputation
size was established as 2000, the equation termsefato linear polynomial and the mutation proligbivas
specified as 0.1. It has been shown that a highevaf statistical characteristics r and F and laug of s and LOF
need not be the proof of a highly predictive mod#nce, in order to evaluate the predictive abiifythe QSAR
model, the method described by Roy et al [16] antbfaikh and Tropsha [17] and for external predidity was
used. It was determined by calculating the valugreélictive B (Rzpred) using the following equation.

Validation parameters
R2
The coefficient of determinatior®f) indicates the quality of fit and is calculated as

XY bs_Ycalc)Z
R? =1 — 2 obs—cale 2
Z(yobs_yobs)2 ( )

In the above equation, Yobs stands for the obseresponse value, while Ycalc is the model-derivaltidated
response anll,;; is the average of the observed response valuesh&adeal model, the sum of squared residuals
being 0, the value of Rs 1. As the value of Rdeviates from 1, the fitting quality of the modisteriorates. The
square root or Ris the multiple correlation coefficient (R).

Total sum of squares (TSS) and MSE

It is the total variance that a regression model eaplain and is used as a reference quantity toulede
standardized quality parameters. Also denotedS8Y it is the sum of the squared differences betwtan
experimental responses and the average experintestainse:

TSS =8SY = Z(Yobs - Ytrain)z (3)

TSSis assumed as a theoretical reference model wbeeath experimental response a constant valwsdslated

as the average experimental respofi&Sdepends on the measure unit used for the respbt®Erepresents the
standard distance data values far from the regmnedsie. For a given study, the better the equaticeticts the
response, the lowdiSE

MSE = XY obs—Vtrain)? (4)
N-p
Rzadj and F-test

The statistical qualities of the equations weregpdl by the parameters such as explained variaﬁi;,ej),(
determination coefficient @Rand variance ratio (F) at specified degreesasdom (df) [18]. Rdjis defined as

(N-1)R%-p-1
Rotj =" — (5)

If one goes on increasing the number of descrigtos model for a fixed number of observation$ vRlues will
always increase, but this will lead to a decreastheé degree of freedom and low statistical religbiTherefore, a
high value of Ris not necessarily as indication of a good sta@stinodel that fits well the available data. Tdeef
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the explained variance (the fraction of the datdavae explained by the model) in a better waytha above
expression, p is the number of predictor variahlesd in the model developmeiftratio test is the most well-
known statistical tests, this is defined as:

Z(Ycal_?train)z
F=—~Ft—+ (6)
2:(Yobs_ycal)z
N-p-1

The F value has two degrees of freedom: p,fN- 1. The computed F value ofreodel should be significant at P <
0.05. For overall significance of the regressioafficients, the F value should be high.

Standard error of estimate (SEE) and Quality index or factor (Q)
For a good model, the standard error of estimaié sifould be low and this is defined as follows:

- 2
SEE = ’(Yol;:_::iilc) (7)

It has a degree of freedom of N — p — 1. In 199duality factor Q [19, 20]] for regression was defil as:
R
Q=7 ®)

"This quality factor Q is defined as the ratio bétcorrelation coefficientR) to the standard error of estimate. This
factor accounts for the predictive power of the glddAs it can be easily observed, none of the ipatars in the
guality index definition is in some way relatedhe prediction power of the model, but is (of ce)jnelated tdR.

The Predicted residual sum of squares (PRESS) and Standard deviation error of prediction (SDEP)
The PRESS(predicted residual sum of squares) statistic ajgpgabe the most important parameter for a good

estimate of the real predictive error of the modéls small value indicates that the model predimtter than
chance and can be considered statistically sigmifidt is calculated by following equation [21]:

2
PRESS = Z(Yobs - Ypred) (9)

SDEP = /”’f“ (10)

N refers to the number of observation

QZ(LOO) and QZ(LMO)

In case of leave-one-out (LOO) cross-validatiorgthemember of the sample in turn is removed, thienfiddeling
method is applied to the remainingl members, and the fitted model is applied tohthieback member. The LOO
approach perturbs the data structure by removingthl/compound in each cross-validation round, thus,
accomplishing an increasingly smaller perturbatioth increasing N. Hence, the Q2 value of LOO apptes to
that of R2, which is highly unsatisfactory [22].dSs-validated squared correlation coefficient RD@-Q2) is
calculated according to the formula:

Z(y re _Y)Z
O (11)
Ypred and Y indicate predicted and observed agtivillues respectively and indicate mean activity value. A
model is considered acceptable when the value “o&X@eeds 05. The model predictivity is judged using
predicted residual sum of square (PRESS) ahtbithe model while the value of standard deviatdrerror of

prediction (SDEP) is calculated from PRESS.

The basic principle of the leave-many-out (LMO)heigjue or leave-Group-out (LGO) technique is thakeéinite
portion of the training set is held out and elint@thin each cycle. For each cycle, the model isttooted based on
the remaining molecules (and using the originakyested descriptors) and then the activity of theetdd
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compounds is predicted using the developed modedr All the cycles have been completed, the ptediactivity
values of the compounds are used for the calcnlatishe LMO-G.

Ripres and Qo)

Cross validation provides a reasonable approximaifaability with which the QSAR predicts the adtywalues of
new compounds. However, external validation givesuitimate proof of the true predictability of adel. In many
cases, truly external data points being unavail&iierediction purpose, original data set compauark divided
into training and test sets [16], therefore enaplexternal validation. This division of the datat ®an be
accomplished in many ways, but approximately simiéamges of the biological responses and strucpnaerties
and all available structural and/or physicochemfeatures should be represented in both trainird) tast sets.
Equations are generated based on training set aomdscand predictive capacity of the models is jddigased on
the predictive ﬁ(Rzp,ed) values calculated according to the following dra

2
Z(Y red(test)_y(test))
2 — 14
Riog=1- ) (test (12)
Z(Y(test)_ytrain)

Ypred(test) and Y(test) indicate predicted and plesk activity values respectively of the test sehpounds and
training indicates mean activity value of the tmnagnset. For a predictive QSAR model, the valué&g;‘ed should be
more than O.SQZ(FZ) is based on prediction of test set compoundﬁpmproposed by Schidrmann et al. [23] as
given by equation below:

Y(Yobs(test)~Ypred(test )2
2 obs(test) "' pred(test)
0 =1- 13
F2) Z(yobs(test)—ytest)z ( )

Here, Y, refers to the mean observed data of the testa@apaunds. A threshold value 0.5 is defined for this
parameter.

r2m

It has been earlier shown [24] th2pred may not be sufficient to indicate external praslitt of a model. It may
not truly reflect the predictive capability of theodel on a new dataset. Besides this, a good \&fsguared
correlation coefficientn(2) between observed and predicted values of thesedstompounds does not necessarily
mean that the predicted values are very near toegponding observed activity (there may be conalder
numerical difference between the values though tamiimg an overall good inter-correlation). So, foetter
external predictive potential of the model, a miedifr2 [r2m(test)] was introduced by the following equation
[24]:

Ttesty = T2 X (1 —Jrz - roz) (14)

Wherer02 is squared correlation coefficient between theeoled and predicted values of the test set commound
with intercept set to zero. The valuer@m(test) should be greater than 0.5 for an acceptable modedlly, the
concept ofr2m was applied only to the test set prediction [1hi it can as well be applied for training setiifeo
considers the correlation between observed an@{eag-out (LOO) predicted values of the trainingcganpounds
[25]. More interestingly, this can be used for Wigole set considering LOO-predicted values fortthaing set and
predicted values of the test set compounds. The(overall) statistic may be used for selection of the best
predictive models from among comparable models.

The r2m metric for internal validation

An acceptable value (QZ(LOO) does not inevitably indicate that the predictetivilg data lie in close proximity to
the observed ones although there may exist a geerhib correlation between the values. Therefasegavoid this
problem and to better indicate the model predititgbithe r2m metrics introduced by Roy et al. [16] may be
computed by the following equations:

2.2
72 = (r+rd) (15)

m 2
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Ak = |r2 —r2|
(16)

The7? is the average value of and;?, andAr? is the absolute difference betweeghand;?. In case of internal
validation of the training set, th?,%l(wo) andAr,fl(wo) parameters can be employed and it has been shawthe

value ofAr,fl(wO) should preferably be lower than 0.2 provided thatvalue off,fl(wo) is more than 0.5. Roy et al
[16].

RZ

Fuprther statistical significance of the relatiomsHietween activity and the descriptors can be datbdhy
randomization test (Y-randomization) of the modg&lsis method is of two types: process randomizatiot model
randomization. In case of process randomizatiom viilues of the dependent variable are randombndgied and
variable selection is done freshly from the whobsatiptor matrix. In case of model randomizatidwg ¥ column
entries are scrambled and new QSAR models are ase@lusing same set of variables as present in the
unrandomized model. For an acceptable QSAR motlel,average correlation coefficieriRrf of randomized
models should be less than the correlation coeffifR) of non-randomized model. We have used anpeierR2p
[26] in the present paper, which penalizes the m&i&for the difference between squared mean correlatio
coefficient (Rr2) of randomized models and squaaudelation coefficient (R2) of the non-randomizaddel. The
above mentioned novel parameter can be calculatéldelfollowing equation:

R%=R*x/R? —R? (17)

This novel parameter Rp2 ensures that the modetsdbveloped are not obtained by chance. We hawenasl that
the value of Rp2 should be greater than 0.5 faxaeptable model.

Golbraikh and Tropsha’s criteria [17] proposed tcfeparameters for determining the external pradbidity of
QSAR model. According to Golbraikh and Tropsha, eisdare considered satisfactory, if all of the daling
conditions are satisfied

) Q%o > 05
i) RZ,.q > 0.6

21,

.2

iii) % <0.1and0.85 <k < 1.15
2_."2 ,

iv) —%<0.1and0.85 <k <115

v) |r¢-r¢| <03
RESULTS AND DISCUSSION

For the selection of the most important descript@5A multiple regression techniques were usedstligrthe
GFA-MLR analysis selection and the variables elation was employed to model the QSARs with a différset
of descriptors. In order to build and test modetiata set of 106 compounds was separated (usingaf@sStone
method) [27] into a training set of 74 compoundd%j, which was used to build model and a predictienof 32
compounds (30%), which was applied to test thet bmédel. The selection of the test set molecules wah
respect to distribution in the range of the biotadidata for the whole set, and their structuredity. The GFA-
MLR analysis led to the derivation of two modelttwtwelve (12) variables, the next to the ratidfieé training
molecules for each descriptor [28] with low genigyadnd prediction ability for the test set. ltdescribed by the
following equation:

Model 1

pC50 =

47.40398(1+4.23076) + 0.56731(+0.0973) ALogP + 0.11102(40.00929) ATSm5 —
0.21722(4+0.07907) C2SP3 — 2.26655(+0.32454) VPC — 4 + 0.58171(+0.10746) CrippenLogP —
5.95183(4+1.49219) SsI — 40.28928(1+6.29647) ETA_AlphaP — 26.31724(+2.21578) ETA_Epsilon_1 —
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0.26092(10.02824) nAtomP — 11.8987(12.85944) PetitjeanNumber —
0.18179(£0.07087) Wlambda2.unity — 0.13964(+0.01609) Wlambdal.polar.

N = 74,LOF = 0.9812,
SEE = 0.4634,r? = 0.9174,r%adjusted = 0.9011,F = 56.4427 (DF: 12,61),Q2(L00) =
0.8840, PRESS = 18.3834,SDEP(L0O0) = 0.4984,r2m®*°? = 0.8651, rm? 00 =

0.8012, average rm?>*%9 = 0.8331, delta rm?>®*°9 = 0.0639, Q*(L50) = 0.8729,SDEP (L50) =
0.1357,R% = 0.8289.

External Validation Parameters (Without Scaling):

r?2 = 0.76686,170% = 0.75244, reverse r0% = 0.7522, rm2(est) = 0.67476, reverse rm2(test) =
0.674, average rm>test) = 0.67438, delta rm?(est) = 0.00075, rmsep = 0.83033,rpred? =
0.74141,Q2f1 = 0.74141,Q2f2 = 0.70698.

Overall Parameters:
rm”2(overall) = 0.78227,reverse rm"2(overall) = 0.77117,average rm”"2(overall) =
0.77672,delta rm”2(overall) = 0.0111.

Golbraikh and Tropsha acceptable model criteria’s

1. Q% = 0.88404, Passed (Threshold value Q% > 0.5)

2. r?= 0.76686,Passed (Threshold value r? > 0.6)

3. |r02 — r'02| = 0.00024, Passed (Threshold value |r02 — r'02| < 0.3)

4. k = 0.95057,

[(r*2 —7r0”2)/r"2] = 0.01881 OR k' = 1.03673 [(r*2 —1r'0"2)/r"2] =

0.01912Passed (Threshold value: [0.85 < k < 1.15 and ((r"2 —r0"2)/r*2) <0.1]OR[0.85 < k'<
1.15 and ((r*2 —r'0"2)/r*2) < 0.1])

Model 2

pEC50 = 45.13546(£3.86674) + 0.59311(%0.09875) ALogP + 0.10689(%0.00898) ATSm5 —
0.2022(£0.07942) C2SP3 — 2.28321(+0.32573) VPC — 4 + 0.49616(1+0.10548) CrippenLogP —
6.32113(+1.53778) SsI — 36.86178(+5.74698) ETA_AlphaP — 25.89084(+2.18645) ETA_Epsilon_1 —
0.26897(140.02847) nAtomP — 11.24469(+2.85923) PetitjeanNumber —

0.12202(40.05051) Wlambda2.mass — 0.12557(+0.01477) Wlambdal.polar.

N =74,LOF = 0.9921,SEE = 0.46595,r2 = 0.91646,7r2 adjusted = 0.90003,F = 55.76538 (DF :
12,61),Q2 : 0.88512, PRESS = 18.2119,SDEP = 0.49609,rm"2(Loo) = 0.86761,rm"2'(Loo) =
0.80139, average rm”~2(LO0) = 0.8345,delta rm”"2(LO0) = 0.06622.

External Validation Parameters (Without Scaling):

r% = 0.75421,70% = 0.73646, reverse r02 = 0.73932, rm2(test) = 0.65372, reverse rm?2(test) =
0.66218, average rm?®est) = 0.65795, delta rm?(est) = 0.00846,rmsep = 0.8666, rpred? =
0.71833,Q2f1 = 0.71833,Q2f2 = 0.68082.

Overall Parameters:

rm2©veral) = (77242, reverse rm?©verl) = 0.76688, average rm?(©verl) = 0.76965, delta rm?©verald) =
0.00554.

Golbraikh and Tropsha acceptable model criteria’s:

1. Q*2 = 0.88512Passed (Threshold value Q"2 > 0.5).

2. r2 = 0.75421Passed (Threshold value r? > 0.6)

3. |r02 — r'02| = 0.00286, Passed (Threshold value |r02 — r'02| < 0.3)

4. k = 094558 [(r"2 —r072)/r*2] = 0.02354 OR k' = 1.04122,[(r"2 —r'0"2)/r"2] =

0.01974, Passed (Threshold value: [0.85 < k < 1.15and ((r*2 —r0"2)/r*2) < 0.1]OR [0.85 < k'<
1.15and ((r*2 —r'0"2)/r"2) < 0.1])
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Table 2: Description about selected variables

Descriptors Definition VIF* ME**
ALogP Ghose-Crippen LogKow 2.40446 | -0.02121
ATSm5 ATS autocorrelation descriptor, weighted bgled atomic mass 3.234091 -0.145p7
C2SP3 Singly bound carbon bound to two other carbon 2.974552| 0.002944
VPC-4 Valence path clster, order 2.14998: | 0.09435
CrippenLogP Crippen's LogP 3.754902| -0.0327
Ssl Sum of sl E-states 1.150876| -0.00016
ETA_AlphaP Sum of alpha values of all non-hydrogertices of a molecule relative to molecular sjze.263837| 0.466109
ETA_ Epsilon_1 | A measure of electronegative atorm¢ou 2.477218| 0.396611
nAtomP Number of atoms in the largest pi system 1.630305| 0.054386
PetitieanNumbe | Petitiean numbt 1.3025¢ | 0.13471
WIlambda2.unit | Directional WHIM, weighted by unit weigt 1.92511 | 0.01815:
Wlambdal.polar| Directional WHIM, weighted by atorpilarizabilities 1.462233 0.031869

*Variation Inflation Factor; **Mean effect

In this equationN is the number of compoundg? is the squared correlation coefficient, SDEP is standard
deviation error of prediction, {LOO) and G(LMO) are the squared cross-validation coefficieotsleave one out
and leave many ouE is the FisheF statistic. The genetic algorithm was used to $ehex best set of variables.
The best model has twelve parameters becausedteage in the number of molecular descriptors basgnificant
effect on the accuracy of the best model. Aftergblection of the most important descriptors byegieralgorithm,
MLR was performed to build the linear model. Thigiation and its statistical parameters are predentenodel 1
and 2. With the test set, the prediction resultsewsbtained. The experimental and predicted vahased on the
GA-MLR model are shown in Table 1. Also, Fig. 2 wisahe predicted versus experimental lf©r all of the 106
compounds studied, the training set and the tésiAsecan be seen, the predicted values for the;p&@ in good
agreement with those of the experimental valuesca#s be seen from model (1) and (2), R?@red Q%nand Q%,
values in test set improved from 0.7183, 0.7183@B808 respectively by GA-MLR model. The resulissirated
show successful variable selection procedure isj@ate to generate an efficient QSAR model for mtauy the
pEGso of compounds.

14
12

10

Predicted EC50
()] (o]
te
%
see
.\

-4 -2 0 2 4 6 8 10 12 14 16
Observed EC50

® Training Test

Figure 2: Shows the predicted versus observed pkgfor all of the 106 compounds studied, the traininget and the test set

Evaluation of the GA-MLR model

The quality of the QSAR model was characterizedheynumber of compounds used in the stidy €oefficient of
determination i), root mean square error (RMSE), and variance i@&). For a more exhaustive testing of the
predictive power of the model, validation of thedabwas also carried out using the leave one o@{Land the
leave many out (LMO) cross-validation techniquesthom training set of compounds. For LOO cross-eiah, a
data point is removed from the set, and the moslalecalculated. The predicted gddor that point is then
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compared with its actual value. This is repeateiil each data point has been omitted once. For LI8%,of the

data points are removed from the dataset and tlkeineas refitted; the predicted values for thos@tgovere then
compared with the experimental values. The requitsluced by the LOOQ? = 0.8840) and the LMO (Q2LMO
=0.8729) cross-validation tests illustrated thelitgiaf the obtained model. Because all of the dafion techniques
show the obtained model 1 is a valid model saaiit lbe used to predict the inhibition activity o tomponents.

Euclidean based applicability domain (AD)

The principle of Applicability Domain helps the wuseo specify the scope of their proposed modetsetore,

defining the model limitations with respect to stsuctural domain and response space. If an exteamapound is
beyond the defined scope of a given model, it iss@ered outside that model’s Applicability Dom#&&D) and

cannot be associated with a reliable predictione Tésulting model can be reliably applicable fotyothose

compounds which are inside this domain. Euclidesset applicability domain helps to ensure thattttimapounds
of the test set are representative of the traisietgcompounds used in model development. It iscbasedistance
scores calculated by the Euclidean distance nosbdirst, normalized mean distance score for tragniset

compounds are calculated and these values rangesdrto 1(0 = least diverse, 1 = most diverse ingirset

compound). Then normalized mean distance scoréefirset are calculated (Table 3), and those tespounds
with score outside 0 to 1 range are said to badrithe applicability domain. This can also be &eelcby plotting a
‘Scatter plot’ (hormalized mean distance vs. repeactivity) including both training and test set shown in
Figure 3. If the test set compounds are insidedtireain/area covered by training set compoundsriegtns these
compounds are inside the applicability domain otlez not [29, 30].

Table 3: Calculated normalized mean distance scoffer training and test set

Training Set Test Set
No Distance Mean Normglized Mean No Distance Mean Normglized Mean
) Score Distance Distance ) Score Distance Distance
2 985.2709 13.31447 0.185163 | 755.8312 10.21393 019847
4 1537.97 20.78341 0.58339 3 960.304 12.9770! 0.16717-
5 728.9325 9.850439 0.000466 737.4291 9.965258 006888
6 751.3568 10.15347 0.016624 32 1005.782 13.59165 .199042
7 801.2018 10.82705 0.052538 34 1030.543 13.92625 217082
9 2116.177 28.59699 1 31 979.0617 13.2305¢ 0.180689
10 1204.272 16.27395 0.342957 39 780.6071 10.548715 0.037699
11 73845 9.979141 0.00732! 49 748.612. 10.1163i 0.01464
12 753.1498 10.1777 0.017915 50 808.6954 10.92832 .057037
13 774.2701 10.46311 0.033133 33 987.458 13.34404 0.186739
14 754.9798 10.20243 0.019234 55 799.987] 10.81064 0.051663
15 787.4674 10.64145 0.042642 56 916.548¢ 12.385719 0.135647
16 821.6045 11.10276 0.067238 57 821.231. 11.09772 0.066969
17 741.491 10.0201 0.00951 58 1019.43 13.7761. 0.20977!
18 817.887! 11.0525: 0.0645t¢ 66 931.322! 12.5854- 0.14629.
19 935.7124 12.64476 0.149455 69 1153.781 15.59164 0.306578
20 989.2855 13.36872 0.188055 11 1405.844 18.99791 0.488194
21 766.2568 10.35482 0.027359 14 921.1001 12.44738 .138027
22 837.6937 11.32019 0.078831 15 1009.56 13.6427 202663
23 1034.12° 13.9746! 0.22036: 77 934.542 12.6289! 0.14861.
24 1960.14 26.4884 0.88757: 8C 910.724 12.3070! 0.13145:
25 977.6947 13.21209 0.179704 g5 828.1271 11.19091 0.071938
26 1451.917 19.62051 0.52139 g7 1274.512 17.22313 .393865
27 1767.103 23.87977 0.748486 g8 2473.941 33.431} 257178
28 898.6704 12.14419 0.122766 90 1055.781 14.26733 0.235967
29 836.389! 11.3025! 0.07789. 93 1159.10: 15.6635 0.31041:
30 918.1233 12.40707 0.136782 96 876.855]] 11.84939 0.107047
31 755.6354 10.21129 0.019706 98 970.806]] 13.119 174041
33 1481.807 20.02442 0.542926 1p0 1094 14.78378 63602
35 763.6945 10.3202 0.025513 103 1135.92] 15.35028 0.293709
36 995.4436 13.45194 0.192492 104 2564.136 34.65048 1.322762
38 1329.60° 17.9676! 0.43326: 10€ 737.525: 9.96655! 0.00665!
40 897.6838 12.13086 0.122055
41 750.544 10.14249 0.016038
42 1082.96 14.63459 0.255549
43 752.3112 10.16637 0.017311
44 764.6559 10.33319 0.026206
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45 741.8753 10.02534 0.009792
46 822.5552 11.11561 0.067923
47 870.0964 11.75806 0.102177
48 766.380i 10.356¢ 0.C2744¢

51 744.2993 10.0581 0.011538
52 947.2455 12.80061 0.157765
54 980.7949 13.25399 0.181938
59 1679.681 22.69839 0.685497
60 1402.82 18.95702 0.486014
61 1225.02: 16.5543! 0.357901

62 2033.867 27.48468 0.940694
63 1821.807 24.61902 0.787902
64 759.8092 10.26769 0.022714
65 792.6499 10.71148 0.046376
67 929.8999 12.56621 0.145267
68 912.0834 12.32545 0.13243
70 985.2961 13.31481 0.185181
72 1207.873 16.32261 0.345551
73 784.4533 10.60072 0.04047
76 993.5976 13.42699 0.191162
78 1209.989 16.3512 0.347076
79 1056.677 14.27942 0.236612
81 1111.755 15.02371 0.276296
82 968.0279 13.08146 0.172739
83 999.0982 13.50133 0.195125
84 826.6621 11.17111 0.070882
86 1016.226 13.73279 0.207467
89 820.0085 11.0812 0.066088
91 1063.23 14.36797 0.241333
92 1215.749 16.42904 0.351226
94 998.7944 13.49722 0.194907
95 884.6314 11.95448 0.11265
97 1486.12 20.0827 0.546033
99 1417.359 19.1535 0.496489
101 810.5394 10.95324 0.059266
102 1055.089 14.25796 0.235468
105 728.2851 9.841691 0

@ Training @Test

1.4
®

31.2
c
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B o1 o
° [ )
50.8 ¢

. °
] °
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Figure 3: Euclidean Based applicability domain plg, the plot of the normalized mean distance vs. obsved EC50

Compound No. 88 and 104 are said to be outsidagpkcability domain as shown in Figure 3.
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The Williams plot, the plot of the standardizedidasls versus the leverage, was exploited to viseathe
applicability domain (AD) [31]. Leverage indicatecompound’s distance from the centroidkofThe leverage of a
compound in the original variable space is defiagd

h; = XT(XTX)71X; (18)

wherey; is the descriptor vector of the considered comgaamdX is the descriptor matrix derived from the training
set descriptor values. The warning leverdyg is defined as:

« _ 3(p+1)

WhereN is the number of training compoungbsis the number of predictor variables. From thel¥fits plot (Fig.
4), it is obvious that all compounds in the tedt fedl inside the domain of the GA-MLR model (theaming
leverage limit is 0.53). There are only two chers¢dlo. 9 and No. 26 in the training set and Noa66é No. 90 in
the test set) which have the leverage higher thamarningh* value, so they can be regarded as structurakositli
Luckily, in this case the data predicted by the eiatte good for compound numbers 9, 26, 66 andh@defore,
they are “good leverage” chemicals. For all the poonds in the training and test sets, their statized residuals
are smaller than three standard deviation uni} (3

2 o®
-
3 1 .0.0“ ) .
$ OQ [ ) o
< 0 PA®S L ® ®
T 0 ""' ean® °° os 0.6 0.8 1
N S0 % ° :
5 -1 ° 8g® ©
@ ”9
©
£ -2 fe
)
3
4

Leverages

® Training Test

Figure 4: The Williams plot, the plot of the standadized residuals vs. leverages

The GA-MLR model was further validated by applyiMgandomization. Several random shuffles of theector
(PEGso) were performed and the lo® and Q° values that were obtained showing that the gosdlt® in the
original model is not due to a chance correlatiostauctural dependency of the training set. Tteilte of theY-
randomization test are presented in Table 2.
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Table 4: Y-randomization test for training set

Model R R"2 Qn2
Original 0.957799| 0.917379 0.8840¢
Random 1 0.37598% 0.141364 -0.202B2
Random 2 0.369551 0.136568 -0.402113
Random . 0.50699: | 0.25704. | -0.1672¢
Random 4 0.422673 0.1786532 -0.1396
Random 5 0.486196¢ 0.236387 -0.075B9
Random 6 0.31597| 0.099837 -0.37354
Random 7 0.355047 0.126059 -0.27841
Random 8 0.399184 0.159348 -0.206B9
Random ! 0.40719' | 0.16581: | -0.5945:
Random 1 0.46554! | 0.21673( | -0.1988:¢
Random Models Parameters
Average R : 0.41043%
Average R"2 : 0.17178§
Average Q"2 : -0.26384

The brief description of the selected descriptoys@GA-MLR model is summarized in Table 3. The catien
matrix of the twelve selected descriptors is lds=mnt0.621, which means the descriptors are indegmerid the
analysis.

The multi-collinearity between the above twelve atggors was detected by calculating their variatioflation
factors (VIF), which can be calculated as follows:

1

VIF = —

(20)

Where the R2 is the correlation coefficient of theltiple regression between the variables withrodel. If VIF
equal to 1, then no inter-correlation exists foctesariable; if VIF falls into the range of 1-5ethelated model is
acceptable; and if VIF is larger than 10, the eslatnodel is unstable and a recheck is necessaly T32
corresponding VIF values of the twelve descriptmes presented in Table 2. As can be seen fromabéTall the
descriptors have VIF values of less than five i(@jcating that the obtained model has statistsoghificance, and
the descriptors were found to be reasonably orthalgo

The mean effect (MF) shown in Table 2 indicatesrtiative importance of a descriptor, compared wfih other
descriptors in the model. Its sign indicates thealde direction in the values of the activitieseasesult of increase
or decrease of the descriptor values and the \adltlee mean effect can be calculated as follows:

_ B T ay;
MF T B R dij (21)
Where MF represents the mean effect for the descijpBj is the coefficient of the descriptor j, dij isetivalue of
the interested descriptors for each molecule aiglthe number of descriptors in the model [33].

A negative mean effect of this descriptor illustsathat the activity increases with decreasingvtiiee of Ghose-
Crippen LogKow (ALogP), ATS autocorrelation destoip weighted by scaled atomic mass (ATSm5), Ciggpe
LogP (CrippenLogP) and Sum of sl E-states (Ssle $mgly bound carbon bound to two other carborzS{3),
Valence path cluster, order 4 (VPC-4), Sum of alphlaes of all non-hydrogen vertices of a molecelative to
molecular size (ETA_AlphaP), A measure of electgaive atom count (ETA_Epsilon_1), Number of atomghe
largest pi system (nAtomP), Petitiean number (jeatitNumber), Directional WHIM, weighted by unit \gbts
(Wlambda2.unity) and Directional WHIM, weighted agomic polarizabilities (Wlambdal.polar) mean effeas a
positive sign. This sign suggest that the anti-laB#ivity is directly related to this descriptors.

CONCLUSION

The aim of the present work was developing a QSARIysand predicting the anti-HIV activities of HEPT
derivatives. Various theoretical molecular desoriptwere calculated by Spartan’sl4 and PaDEL softvead
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selected by Genetic function approximation. ThdtliBFA-MLR model was assessed comprehensively,adinithe
validations indicate that the QSAR model we busltréobust and satisfactory. Selection of the twelescriptors
showed that the play a main role in the anti-HIY\aty of the compounds.
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