

Scholars Research Library

J. Comput. Method. Mol. Design, 2011, 1 (4):14-21 (http://scholarsresearchlibrary.com/archive.html)

Quantitative structure-activity relationship of matrix metalloproteinase inhibitors based on quantum chemical descriptors

Abhishek Giri, Bhuwan B. Mishra, Priyanka Tripathi, Prahlad P. Agrawal and Pashupati P. Singh

Department of Chemistry, Maharani Lal Kunwari Post Graduate College, Balrampur(U.P.), India

ABSTRACT

Quantitative structure-activity relationship of nineteen matrix metalloproteinase inhibitors based on quantum chemical descriptors, heat of formation; steric energy; total energy; energy of highest occupied molecular orbital; energy of lowest unoccupied molecular orbital; absolute hardness and electronegativity, has been studied. For QSAR prediction, the 3D structures of the inhibitors have been drawn and their geometries have been optimized with the help of CAChe software by using PM3 hamiltonian. The purpose of the study is to test the suitability of the above quantum chemical parameters as possible biological activity descriptor in the development of QSAR. Results emanated from the study show that heat of formation, steric energy, total energy and energy of lowest unoccupied molecular orbital can be used as descriptors of biological activity. On the basis of the derived models one can build up a theoretical basis to access the biological activity of the inhibitors of the same series.

INTRODUCTION

Quantitative structure-activity relationship (QSAR) (sometimes QSPR: quantitative structureproperty relationship) is the process by which chemical structure is quantitatively correlated with a well defined process, such as biological activity or chemical reactivity[1-10]. For example, biological activity can be expressed quantitatively as in the concentration of a substance required to give a certain biological response. Additionally, when physicochemical properties or structures are expressed by numbers, one can form a mathematical relationship, or quantitative structure-activity relationship, between the two. The mathematical expression can then be used to predict the biological response of other chemical structures. In this research work, we present the QSAR study of MMP inhibitors using quantum chemical descriptors. Quantum chemical methods and molecular modeling techniques¹¹ enable the definition of a large number of molecular and local quantities characterizing the reactivity, shape and binding properties of a complete molecule as well as of molecular fragments and substituents. Because of the large welldefined physical information content encoded in many theoretical descriptors, their use in the design of a training set in a QSAR study presents two main advantages: (a) the compounds and their various fragments and substituents can be directly characterized on the basis of their molecular structure only; and (b) the proposed mechanism of action can be directly accounted for in terms of the chemical reactivity of the compounds under study. Consequently, the derived QSAR models will include information regarding the nature of the intermolecular forces involved in determining the biological or other activity of the compounds in question. Quantumchemically derived descriptors are fundamentally different from experimentally measured quantities, although there is some natural overlap [11]. Unlike experimental measurements there is no statistical error in quantum-chemical calculations. There is inherent error however, associated with the assumptions required to facilitate the calculations. In most cases the direction but not the magnitude of the error is known. In using quantum chemistry-based descriptors with a series of related compounds, the computational error is considered to be approximated constant throughout the series. The survey of the literatures[12-28] also indicates that no QSAR model for prediction of activity of matrix metalloproteinase (MMP) inhibitors under study has been made with the following quantum mechanical parameters:

- 1. Heat of formation $(\Delta H_{f}^{\circ})[29]$
- 2. Steric Energy (SE)[30]
- 3. Total energy (TE)[31]
- 4. HOMO energy (\in HOMO)[32]
- 5. LUMO energy (\in LUMO)[32]
- 6. Absolute Hardness $(\eta)[33]$
- 7. Electronegativity $(\chi)[34]$

MATERIALS AND METHODS

The study materials of this paper are MMP inhibitors [28] and are presented in Table-1. For QSAR prediction, the structures of all the above compounds have been drawn and their geometries[35] have been optimized with the help of CAChe software using PM3 hamiltonian[36-38].

The values of selected descriptors have been obtained from the software by solving the equations given below and the results are included in Table 2.

The heat of formation[29] is defined as

$$\Delta H_{\rm f}^o = E_{elect} + E_{nuc} - E_{isol} + E_{atom}$$
 Eq.1

where E_{elect} is the electronic energy, E_{nuc} is the nuclear-nuclear repulsion energy, E_{isol} is the energy required to strip all the valence electrons of all the atoms in the system and E_{atom} is the total heat of atomization of all the atoms in the system.

The steric energy (SE) of a molecule is the sum of the bonded and nonbonded terms (Van der Waals energy, and the electrostatic energy). The lowest energy conformation is the set of bond lengths and angles that gives the smallest steric energy[30].

Total energy (TE) of a molecular system is the sum of the total electronic energy, E_{ee} and the energy of internuclear repulsion, E_{nr} . The total electronic energy of the system is given by[31]

$$E = \frac{P(H+F)}{2}$$
 Eq.II

where P is the density matrix and H is the one-electron matrix

Parr et al.[34] defined electronegativity as the negative of chemical potential:

$$\chi = -\mu = -\left(\frac{\delta E}{\delta N}\right)_{V(r)}$$
 Eq.III

The absolute hardness $(\eta)[33]$ is defined as

$$\eta = \frac{1}{2} \left(\frac{\delta E}{\delta N} \right)_{V(r)}$$
$$\eta = \frac{1}{2} \left(\frac{\delta^2 E_T}{\delta N^2} \right)_{V(r)}$$
Eq.IV

where E_T is the total energy, N the number of electrons of the chemical species and v(r) the external potential.

The operational definition of absolute hardness and electronegativity[33, 34] is defined as

$$\eta = \frac{(IP - EA)}{2} \qquad \text{Eq.V}$$
$$\chi = -\mu = \frac{(IP + EA)}{2} \qquad \text{Eq.VI}$$

where IP and EA are the ionization potential and electron affinity respectively, of the chemical species. According to the Koopman's theorem[32], the IP is simply the eigen value of the HOMO with change of sign and the EA is the eigen value of the LUMO with change of sign hence the Eq.V and VI can be written as

Scholars Research Library

$$\eta = \frac{(\varepsilon LUMO - \varepsilon HOMO)}{2}$$
Eq.VII
$$\chi = \frac{(\varepsilon LUMO + \varepsilon HOMO)}{2}$$
Eq.VIII

RESULTS AND DISCUSSION

Based on above quantum chemical descriptors, the QSAR model of nineteen MMP inhibitors has been presented in this research work. The purpose of the study is to test the suitability of the above quantum chemical parameters as possible biological activity descriptor in the development of QSAR. In developing QSAR models, quantum chemical descriptors used as independent variables and the observed biological activity in term of IC_{50} values as dependent variable. We have considered 90 QSAR models using MLR analysis[39-41] with the help of various combinations of the descriptors as shown in Table-3. The quantities of descriptors have been taken from Table-2. In order to explore the reliability of the proposed model we have used regression coefficient (r^2) and cross-validation coefficient (rCV^2). Out of above 90 QSAR models only 76 models have predictive powers as these have higher values (\approx 0.5) of both rCV^2 and r^2 coefficients, while the rest have either the value of rCV^2 (\ll 0.2) or r^2 (\ll 0.5) or both much lower than their optimum values.

Table 2. Calculation of various quantum chemical descriptors of the compounds with OBA	

No.	ΔH_{f}° (kcal/mole)	SE (kcal/mole)	TE (Hartree)	∈HOMO (eV)	∈LUMO (eV)	η	χ	OBA (IC ₅₀)
1	-168.648	-23.999	-0.324	-8.941	-0.272	4.335	4.607	360.000
2	-168.627	-12.315	-0.272	-8.948	-0.314	4.317	4.631	2.500
3	-168.634	-2.619	-0.126	-8.943	-0.312	4.316	4.628	30.000
4	-168.638	3.648	-0.452	-8.950	-0.314	4.318	4.632	25.000
5	-168.631	-9.247	-0.316	-8.941	-0.314	4.314	4.628	15.000
6	-168.620	2.271	-0.266	-8.944	-0.318	4.313	4.631	10.000
7	-168.637	6.316	-0.334	-8.966	-0.298	4.334	4.632	140.000
8	-168.629	7.641	-0.336	-8.943	-0.315	4.314	4.629	5.000
9	-168.676	5.385	-0.175	-8.948	-0.214	4.367	4.581	823.000
10	-168.638	10.454	-0.282	-8.943	-0.311	4.316	4.627	70.000
11	-168.718	-12.716	-0.131	-8.939	-0.129	4.405	4.534	1500.000
12	-168.799	-18.569	-0.320	-8.936	0.058	4.497	4.439	3000.000
13	-168.646	-0.203	-0.469	-8.949	-0.282	4.333	4.615	270.000
14	-168.661	4.006	-0.416	-8.942	-0.229	4.356	4.585	690.000
15	-168.622	13.807	-0.278	-8.943	-0.311	4.316	4.627	5.000
16	-168.630	-39.543	-0.552	-8.943	-0.312	4.316	4.628	20.000
17	-168.634	31.978	-0.615	-8.943	-0.291	4.326	4.617	180.000
18	-168.639	-53.991	-0.341	-8.943	-0.309	4.317	4.626	40.000
19	-168.630	2.982	-0.014	-8.943	-0.302	4.321	4.623	100.000

 ΔH_{f}° is heat of formation, SE is steric energy, TE is total energy, \in HOMO is energy of highest occupied molecular orbital, \in LUMO is energy of lowest unoccupied molecular orbital, η is absolute hardness and χ is electronegativity

Predicted Activity	First descriptor	Second descriptor	Third descriptor	Third descriptor Fourth descriptor		r^2
PAM1	Heat of Formation	Steric Energy			0.98578	0.98914
PAM2	Heat of Formation	Total Energy		_	0.98147	0.98703
PAM3	Heat of Formation	HOMO Energy			0.97907	0.98740
PAM4	Heat of Formation	LUMO Energy			0.99953	0.99966
PAM5	Heat of Formation	Absolute Hardness			0.99382	0.99663
PAM6	Heat of Formation	Electronegativity			0.99601	0.99743
PAM7	Steric Energy	Total Energy			-1.26086	0.03790
PAM8	Steric Energy	HOMO Energy			-0.99994	0.16006
PAM9	Steric Energy	LUMO Energy			0.99939	0.99960
PAM10	Steric Energy	Absolute Hardness			0.99458	0.99581
PAM11	Steric Energy	Electronegativity			0.99522	0.99609
PAM12	Total Energy	HOMO Energy		_	-0.84905	0.16384
PAM13	Total Energy	LUMO Energy			0.99937	0.99961
PAM14	Total Energy	Absolute Hardness			0.99467	0.99572
PAM15	Total Energy	Electronegativity			0.99523	0.99596
PAM16	HOMO Energy	LUMO Energy			0.99944	0.99960
PAM17	HOMO Energy	Absolute Hardness		_	0.99944	0.99960
PAM18	HOMO Energy	Electronegativity			0.99944	0.99960
PAM19	LUMO Energy	Absolute Hardness		_	0.99944	0.99960
PAM20	LUMO Energy	Electronegativity			0.99944	0.99960
PAM21	Absolute Hardness	Electronegativity		—	0.99944	0.99960
PAM22	Heat of Formation	Steric Energy	Total Energy	_	0.98553	0.98914
PAM23	Heat of Formation	Steric Energy	HOMO Energy	_	0.98207	0.98990

 Table 3. Combination of descriptors for MLR analysis

PAM24	Heat of Formation	n Steric Energy LUMO Energy —			0.99953	0.99968
PAM25	Heat of Formation	Steric Energy	Absolute Hardness	_	0.99305	0.99664
PAM26	Heat of Formation	Steric Energy	Electronegativity	_	0.99507	0.99793
PAM27	Steric Energy	Total Energy	HOMO Energy	_	-1.61221	0.16754
PAM28	Steric Energy	Total Energy	LUMO Energy	_	0.99935	0.99961
PAM29	Steric Energy	Total Energy	Absolute Hardness	_	0.99253	0.99586
PAM30	Steric Energy	Total Energy	Electronegativity		0.99320	0.99609
PAM31	Total Energy	HOMO Energy	LUMO Energy	_	0.99937	0.99961
PAM32	Total Energy	HOMO Energy	Absolute Hardness		0.99937	0.99961
PAM33	Total Energy	HOMO Energy	Electronegativity	_	0.99937	0.99961
PAM34	HOMO Energy	LUMO Energy	Absolute Hardness		0.95001	0.00000
PAM35	HOMO Energy	LUMO Energy	Electronegativity	_	0.00000	0.74517
PAM36	LUMO Energy	Absolute Hardness	Electronegativity		0.49131	-7.92753
PAM37	Steric Energy	HOMO Energy	LUMO Energy	_	0.99938	0.99960
PAM38	Steric Energy	HOMO Energy	Absolute Hardness	_	0.99938	0.99960
PAM39	Steric Energy	HOMO Energy	Electronegativity	_	0.99938	0.99960
PAM40	Steric Energy	LUMO Energy	Absolute Hardness	_	0.99938	0.99960
PAM41	Steric Energy	LUMO Energy	Electronegativity	_	0.99938	0.99960
PAM42	Steric Energy	Absolute Hardness	Electronegativity		0.99938	0.99960
PAM43	Total Energy	LUMO Energy	Absolute Hardness	_	0.99937	0.99961
PAM44	Total Energy	LUMO Energy	Electronegativity	_	0.99937	0.99961
PAM45	Total Energy	Absolute Hardness	Electronegativity	—	0.99937	0.99961
PAM46	Heat of Formation	Total Energy	HOMO Energy		0.97627	0.98740
PAM47	Heat of Formation	Total Energy	LUMO Energy		0.99950	0.99967
PAM48	Heat of Formation	Total Energy	Absolute Hardness		0.99281	0.99666

PAM49	Heat of Formation	Total Energy	Electronegativity		0.99562	0.99743
PAM50	Heat of Formation	HOMO Energy	LUMO Energy	_	0.99951	0.99966
PAM51	Heat of Formation	HOMO Energy	Absolute Hardness		0.99951	0.99966
PAM52	Heat of Formation	Total Energy	HOMO Energy	Electronegativity	0.99948	0.99967
PAM53	Heat of Formation	LUMO Energy	Absolute Hardness		0.99951	0.99966
PAM54	Heat of Formation	LUMO Energy	Electronegativity		0.99951	0.99966
PAM55	Heat of Formation	Absolute Hardness	Electronegativity		0.99951	0.99966
PAM56	HOMO Energy	Absolute Hardness	Electronegativity		0.03361	-0.73302
PAM57	Heat of Formation	Steric Energy	Total Energy	HOMO Energy	0.98244	0.98990
PAM58	Heat of Formation	Steric Energy	Total Energy	LUMO Energy	0.99952	0.99969
PAM59	Heat of Formation	Steric Energy	Total Energy	Absolute Hardness	0.99252	0.99667
PAM60	Heat of Formation	Steric Energy	Total Energy	Electronegativity	0.99488	0.99793
PAM61	Heat of Formation	Steric Energy	HOMO Energy	LUMO Energy	0.99952	0.99968
PAM62	Heat of Formation	Steric Energy	HOMO Energy	Absolute Hardness	0.99952	0.99968
PAM63	Heat of Formation	Steric Energy	HOMO Energy	Electronegativity		
PAM64	Heat of Formation	Steric Energy	LUMO Energy	Absolute Hardness	0.99952	0.99968
PAM65	Heat of Formation	Steric Energy	LUMO Energy	Electronegativity	0.99952	0.99968
PAM66	Heat of Formation	Steric Energy	Absolute Hardness	Electronegativity	0.99952	0.99968
PAM67	Steric Energy	Total Energy	HOMO Energy	LUMO Energy	0.99952	0.99968
PAM68	Steric Energy	Total Energy	HOMO Energy	Absolute Hardness	0.99935	0.99961
PAM69	Steric Energy	Total Energy	HOMO Energy	Electronegativity	0.99935	0.99961
PAM70	Steric Energy	Total Energy	LUMO Energy	Absolute Hardness	0.99935	0.99961
PAM71	Steric Energy	Total Energy	LUMO Energy	Electronegativity	0.99935	0.99961
PAM72	Steric Energy	Total Energy	Absolute Hardness	Electronegativity	0.99935	0.99961
PAM73	Steric Energy	Total Energy	LUMO Energy	Absolute Hardness	0.99935	0.99961

PAM74	Steric Energy	Total Energy	LUMO Energy	Electronegativity	0.76091	0.00079
PAM75	Total Energy	Total Energy HOMO Energy Absolute Hardness Electronegativity		Electronegativity	0.59352	0.00079
PAM76	HOMO Energy	LUMO Energy	Absolute Hardness	Electronegativity	-1.30062	0.99332
PAM77	Heat of Formation	Total Energy	HOMO Energy	LUMO Energy	0.94063	0.93225
PAM78	Heat of Formation	Total Energy	HOMO Energy	Absolute Hardness	0.99948	0.99967
PAM79	Heat of Formation	Total Energy	HOMO Energy	Electronegativity	0.99948	0.99967
PAM80	Heat of Formation	Total Energy	LUMO Energy	Absolute Hardness	-0.23329	0.24258
PAM81	Heat of Formation	Total Energy	LUMO Energy	Electronegativity	0.99948	0.99967
PAM82	Heat of Formation	HOMO Energy	LUMO Energy	Absolute Hardness	0.99948	0.99967
PAM83	Heat of Formation	HOMO Energy	LUMO Energy	Electronegativity	0.98675	0.99237
PAM84	Heat of Formation				0.82856	0.64527
PAM85	Steric Energy		_		0.98394	0.98703
PAM86	Total Energy				-0.64568	0.02235
PAM87	HOMO Energy				-0.23137	0.01595
PAM88	LUMO Energy		_		-0.64039	0.15650
PAM89	Absolute Hardness			_	0.99944	0.99960
PAM90	Electronegativity			_	0.99502	0.99567

Out of 76 models the top five models are as below:

I. Top First QSAR model: The top first QSAR model is obtained when multi linear regression analysis is done by taking heat of formation as first descriptor, steric energy as second descriptor, total energy as third descriptor and LUMO energy as fourth descriptor. The regression equation is given below:

The values of the predicted activity PAM58 of all the compounds are listed in the Table-4.

II. Top Second QSAR model: The top second QSAR model is obtained when multi linear regression analysis is done by taking heat of formation as first descriptor, steric energy as second

descriptor, HOMO energy as third descriptor and LUMO energy as fourth descriptor. The regression equation is given below:

The values of the predicted activity PAM61 of all the compounds are listed in the Table-4.

III. Top Third QSAR model: The top third QSAR model is obtained when multi linear regression analysis is done by taking heat of formation as first descriptor, steric energy as second descriptor, HOMO energy as third descriptor and absolute hardness as fourth descriptor. The regression equation is given below:

The values of the predicted activity PAM62 of all the compounds are listed in the Table-4.

IV. Top Fourth QSAR model: The top fourth QSAR model is obtained when multi linear regression analysis is done by taking heat of formation as first descriptor, steric energy as second descriptor, HOMO energy as third descriptor and electronegativity as fourth descriptor. The regression equation is given below:

 $\begin{array}{l} PAM63{=}{-}1457.11{\times}\Delta H_{f}^{`}{+}0.192461{\times}SE{-}7149.74{\times}{\in}\ HOMO{-}14732{\times}\chi{-}241450\\ rCV^{2}{=}0.999518 \end{array}$

			-		• •	-
No.	PAM58	PAM61	PAM62	PAM63	PAM64	OBA
1	346.222	346.713	346.713	346.713	346.713	360.000
2	8.508	6.931	6.931	6.931	6.931	2.500
3	37.400	35.297	35.297	35.297	35.297	30.000
4	24.465	26.144	26.144	26.144	26.144	25.000
5	14.504	15.409	15.409	15.409	15.409	15.000
6	-27.674	-28.515	-28.515	-28.515	-28.515	10.000
7	143.431	139.370	139.370	139.370	139.370	140.000
8	7.224	8.164	8.164	8.164	8.164	5.000
9	820.877	818.190	818.190	818.190	818.190	823.000
10	50.326	51.030	51.030	51.030	51.030	70.000
11	1506.350	1504.559	1504.559	1504.559	1504.559	1500.000
12	2998.488	2999.483	2999.483	2999.483	2999.483	3000.000
13	271.434	272.988	272.988	272.988	272.988	270.000
14	683.961	685.719	685.719	685.719	685.719	690.000
15	28.716	28.325	28.325	28.325	28.325	5.000
16	20.387	23.564	23.564	23.564	23.564	20.000
17	191.574	196.726	196.726	196.726	196.726	180.000
18	51.209	51.499	51.499	51.499	51.499	40.000
19	108.099	103.904	103.904	103.904	103.904	100.000

Table 4. Predicted activities of compounds as obtained by Eq.IX to Eq.XIII

r^2=0.999683

Eq.XII

The values of the predicted activity PAM63 of all the compounds are listed in the Table-4.

V. Top Fifth QSAR model: The top fifth QSAR model is obtained when multi linear regression analysis is done by taking heat of formation as first descriptor, steric energy as second descriptor, LUMO energy as third descriptor and absolute hardness as fourth descriptor. The regression equation is given below:

The values of the predicted activity PAM64 of all the compounds are listed in the Table-4 In order to explore the reliability of the above five model we have used regression coefficient (r^2) and cross-validation coefficient (rCV^2). The regression summary of these models is as shown below

QSAR	rCV^2	r^2	Variable Used	Variable Count
PAM58	0.999519	0.999689	ΔH_{f}° , SE, TE, ϵ LUMO	4
PAM61	0.999518	0.999683	$\Delta H_{f}^{"}$, SE, ϵ HOMO, ϵ LUMO	4
PAM62	0.999518	0.999683	$\Delta H_{f}^{"}$, SE, ϵ HOMO, η	4
PAM63	0.999518	0.999683	$\Delta H_{f}^{"}$, SE, ϵ HOMO, χ	4
PAM64	0.999518	0.999683	$\Delta H_{f}^{"}$, SE, \in LUMO, η	4

From the above study it is clear that the QSAR model no. 1 i.e., PAM58 has highest predictive powers as it has highest values of rCV² (0.999519) and r² (0.999689) among the five QSAR models.

CONCLUSION

Results emanated from the study show that these quantum chemical descriptors (ΔH_{f}° , SE, TE and \in LUMO) can be used as descriptors of biological activity. On the basis of the derived models one can build up a theoretical basis to access the biological activity of the inhibitors of the same series.

REFERENCES

[1] AFA Cros, Action de l'alcohol amylique sur l'organisme. *Strasbourg, University of Strasbourg*, Thesis, **1863**.

[2] A Crum-Brown; TR Fraser, Roy Soc. Edin. 1868-1869, 25,151.

[3] MC Richet, Compt. Rend. Soc. Biol. (Paris) 1893, 45, 775.

[4] H Meyer, Arch. Exp. Path. Pharm. 1899, 42, 109.

[5] CE Overton, Studien über die Narkose. Jena: Fischer, 1901.

- [6] LP Hammett, Chem. Rev. 1935, 17, 125.
- [7] LP Hammett, J. Am. Chem. Soc. 1937, 59, 96.

[8] RW Taft, Separation of polar, steric and resonance effects in reactivity. In: Newman MS (ed.): Steric effects in organic chemistry *New York: Wiley*, **1956**, pp 556-675.

[9] C Hansch; T Fujita, J. Am. Chem. Soc. 1964, 86, 1616.

[10] C Hansch; A Leo, Exploring QSAR. Washington, DC: American Chemical Society, 1995.

[11] M Karelson; VS Lobanov; AR Katritzky, Chem. Rev. 1996, 96, 1027.

- [12] TE Cawston, *Pharm. Ther.* **1996**, *70*, 163.
- [13] LL Johnson; R Dyer; DJ Hupe, Curr. Opin. Chem. Biol. 1998, 2, 466.
- [14] I Massova; LP Kotra; R Fridman; S Mobashery, FASEBJ. 1998, 12, 1075.
- [15] I Gersh; HR Catchpole, Am. J. Anat. 1949, 85, 457.
- [16] J Gross; CM Lapiere, Proc. Natl. Acad. Sci. USA 1962, 48, 1014.

[17] SC Wilhelm; AZ Eisen; M Teter; SD Clark; A Kronberger; G Goldberg, *Proc. Natl. Acad. Sci. USA*, **1986**, *83*, 3756.

[18] KA Hasty; TF Pourmotabbed; GI Goldberg; JP Thompson; DG Spinella; RM Stevens; CL Mainardi, *J. Biol. Chem.* **1990**, 265, 11421.

[19] IE Collier; SM Wilhelm; AZ Eisen; BL Marmer; GA Grant; JL Seltzer; A Kronberger; C He; EA Bauer; GI Goldberg, *J. Biol. Chem.* **1988**, *263*, 6579.

[20] SM Wilhelm; IE Collier; BL Marmer; AZ Eisen; GA Grant; GI Goldberg, J. Biol. Chem. 1989, 264, 17213.

[21] LA Liotta; K Tryggvason; S Garbisa; PG Robey; S Abe, *Biochemistry* 1981, 20, 100.

[22] RM Senior; GL Griffin; CJ Fliszar; SD Shapiro;, GI Goldberg; HG Welgus, J. Biol. Chem. 1991, 266, 7870.

[23] SM Wilhelm; IE Collier; A Kronberger; AZ Eisen; BL Marmer; GG Grant; EA Bauer; GI Goldberg, *Proc. Natl. Acad. Sci. USA* **1987**, *84*, 6725.

[24] D Muller; B Quantin; MC Gesnel; R Millon-Collard; J Abecassis; R Breathnach, *Biochem. J.* **1988**, *253*, 187.

[25] P Basset; JP Bellocq; C Wolf; I Stoll; P Hutin; JM Limacher; OL Podhajcer; MP Chenard; MC Rio; P Chambon, *Nature* **1990**, *348*, 699.

[26] Z Von Marschall; EO Riecken; S Rosewicz, Gut. 1998, 43, 692.

[27] A Ahmad; A Hanby; E Dublin; R Poulsom; P Smith; D Barnes; R Rubens; P Anglard; I Hart, *Am. J. Pathol.* **1998**, *152*, 721.

[28] M Whittaker; CD Floyd; P Browm; AJH Gearing, Chem. Rev. 1999, 99, 2735.

[29] MP Badenes; ME Tucceri; CJ Cobos, Zeitschrift für Physikalische Chemie 2000, 214, 1193.

[30] BP Mikhova; PM Ivanov; SL Spassov, J. Mol. Stru. (THEOCHEM) 1992, 265, 225.

[31] VK Sahu; AK Soni; PP Singh; Asian J. Chem. 2010, 22, 3025.

[32] (a) G Klopman, J. Am. Chem. Soc. 1968, 90, 223. (b) VK Sahu; RK Singh, Clean-soil, air, water, 2009, 37, 850.

[33] RG Parr; RG Pearson, J. Am. Chem. Soc., 1983, 105, 7512.

[34] RG Pearson, Proc. Natl. Acad. Sci. USA., 1986, 83, 8440.

[35] (a) WJ Thiel, *Mol. Struct.* **1988**, 163, 415. (b) A Komornicki; JW McIver, *Chem. Phys. Lett.* **1971**, *10*, 303.

[36] JJP Stewart, J. Comput. Chem. 1989, 10, 209.

[37] JJP Stewart, MOPAC: A General Molecular Orbital Package. J. Compu. Aid. Mol. Design **1990**, *4*, 1-105.

[38] www.CACheSoftware.com

[39] RL Mason; RF Gunst; JT Webster, Commun. Statistics. 1975, 4, 277.

[40] DC Montgomery; EA Peck, Introduction to Linear regression analysis 2nd edition. *John Wiley*. New York. **1992**.

[41] RH Myers, Classical and modern regression application. 2nd edition. *Duxbury press*. CA. **1990**.