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ABSTRACT 
 
A quantitative structure activity relationship (QSAR) study was developed in order to model the toxicity of dioxin, 
specifically toxicity of polyhalogenate /polychlorinated dibenzo-p-dioxins (25PHCDs/ PCDDs).The QSAR model 
was constructed, using Genetic Function Algorithm (GFA).The Quantum chemical descriptors were computed by 
density functional theory (DFT) at B3LYP/ 6-31G*. Model-1 with highest statistical significance was selected and it 
has squared correlation coefficient (R2) =0.971, Cross validated correlation coefficient (Q2) = 0.961 and external 
prediction ability R2

pred = 0.885. The accuracy of the developed model was evaluated through cross-validation, an 
external test set, Y-randomization and applicability domain techniques. The result of the present study is expected to 
be useful to predict and identify other toxic compound or to synthesis non-toxic dioxins.   
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INTRODUCTION 
 

The prediction of toxicity of environmental pollutants or contaminants from their molecular structure is one of the 
major aspect of modern toxicology research and the potential toxicity of compounds can equally be assessed on the 
basis of their physicochemical and biological properties [1].  
 
Dioxins are polyhalogenated/polychlorinated aromatic Compounds formed as by-products of various industrial 
processes (such as incomplete combustion of organic compounds containing chlorine, medical/municipal wastes 
incineration etc.) and commonly regarded as highly toxic compounds that are environmental pollutants and 
persistent organic pollutants POPs [2]. The term “dioxins and dioxin-like compound” commonly refers to 
polychlorinated dibenzodioxins (PCDDs), poly-chlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls 
(PCBs) [3].  
 
Dioxins (PCDDs) are characterized by hydrophobicity and lipophilicity, and these characteristics make them to 
concentrate in adipose and hepatic tissues and can persist in an individual for long periods of time [4-5]. These 
compounds are persistent Organic pollutants (POPs) that can enter water bodies and accumulate in soil, sediments, 
biota, humans and food webs, posing significant health threats to humans, animals and the environment [6]. 
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Among the health effects in humans to dioxins (PCDDs)  exposures includes, immunotoxicity, developmental and 
neuron developmental effects, and changes in thyroid and steroid hormones and reproductive function [7].Therefore, 
investigation on toxicity of PCDDs are of great importance as to understand the risk attached to their exposure to 
human health, animals and to the environment. 
 
The study of the quantitative relationship between activity/toxicity and molecular structure (QSAR/QSTR) is an 
important aspect of research in computational chemistry being used in the prediction of toxicity and biological 
activities of organic compounds [8, 9]. Previous studies have also reported several toxic effects exhibited by the 
dioxin like compounds [10]. 
 
In the present study, the main goal was to build a QSAR model for description and prediction of toxicities of 
polyhalogenated/ polychlorinated dibenzodioxins (PHCDs/PCCDs) using Genetic Function Approximation (GFA) 
Algorithm approach. The proposed method was validated using several strategies: Cross validation, Y-
randomization, and externally validated using division of the entire data set into training data set and test data sets. 
 

MATERIALS AND METHODS 
 

2.1 Data set 
To build a QSAR model for Toxicity of Polychlorinated dibenzodioxins series, a data set of 25 PCDDs compounds 
were taken from literature [11] with the experimental log (1/EC50) values. The studied compounds with their 
corresponding experimental log (1/EC50) values is shown in Table1. 
 

Table1: Chemical structures and experimental log (I/EC50) values for studied compounds 
 

S/N IUPAC NAME/CHEMICAL STRUCTURE TOXICITY 
log(1/EC50) 

1 

1-ChlorodibenzodioxinS 

4.00 

2 

                                         2,8-
Dichlorodibenzodioxin 

5.50 

3 

 
1,2,4-Trichlorodibenzodioxin 

4.89 
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4 

 
2,3,7-Trichlorodibenzodioxin 

7.15 

5 

 
2,3,6-Trichlorodibenzodioxin 

6.66 

6 

 
1,2,3,4-Teterachlorodibenzodioxin 

5.89 

7 

 
1,3,7,8-Teterachlorodibenzodioxin 

6.10 

8 

 
2,3,6,7-Teterachlorodibenzodioxin 

6.80 

9 

 
 

2,3,7,8-Teterachlorodibenzodioxin 

8.00 
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10 

 
1,2,3,7,8-Pentachlorodibenzodioxin 

7.10 

11 

 
1,2,3,4,7-Pentachlorodibenzodioxin 

5.19 

12 

 
1,2,4,7,8-Pentachlorodibenzodioxin 

5.96 

13 

 
1,2,3,4,7,8-Hexachlorodibenzodioxin 

6.55 
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14 

 
1,2,3,4,6,7,8,9-Octachlorodibenzodioxin 

5.00 

15 

 
2,3,7,8-Tetrabromodibenzodioxin 

8.82 

16 

 
2,3-Dibromo-7,8-dichlorodibenzodioxin 

8.83 

17 

 
2,8-Dibromo-3,7-dichlorodibenzodioxin 

9.35 

18 

 
2-Bromo-3,7,8-Trichlorodibenzodioxin 

7.94 

19 

 
1,3,7,8,9-Pentabromodibenzodioxin 

7.03 
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20 

 
1,2,4,7,8-Pentabromodibenzodioxin 

7.77 

21 

 
1,2,3,7,8-Pentabromodibenzodioxin 

8.18 

22 

 
1,3,7,8-Tetrabromodibenzodioxin 

8.70 

23 

 
2,3,7-Tribromodibenzodioxin 

8.93 

24 

 
2,7-Dibromodibenzodioxin 

7.81 

25 

 
2-Bromodibenzodioxin 

6.53 
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2.2 Geometry optimization and calculation of molecular descriptors: 
Molecular structure of all the compounds were drawn using ChemDraw ultra [12] version 12.02 module of the 
program and subsequently imported into Wave function program Spartan ‘’14’’ [13] version 1.2.2 for structural 
minimization. The geometries of all the 25 molecules of PCDDS were optimized with density functional theory 
(DFT) method at the B3LYP level of theory and 6-31G* as the basis set. 
 
2.21 Model generation: 
The structures of 25 Polychlorinated dibenzodioxins (25 PCDDs) were studied by statistical methods based on the 
Genetic Function Algorithm technique to develop all the models. A peculiar features of genetic function 
approximation (GFA) algorithm is that it generate a population of equations rather than a single equation as do most 
other statistical methods. 
 
The range of variation in this population gives added information on the quality of fit and importance of the 
descriptors [14]. The lack- of- fit (LOF) used here i.e. the fitness function was the leave one-out cross validated 
correlation coefficient (Q2LOO) to estimate the quality of the model. This is calculated by  
 

                                                                                            (1) 

Where c= number of basic function  
d= smoothing parameter  
m= number of samples in the training set  
LSE = least square error 
P = total number of features contained in all basics functions [15] 
 
2.3 Validation of QSAR models. 
The predictive ability of the developed QSAR model were evaluated using both internal and external statistical 
validation parameters for a generally acceptable QSAR model proposed by Ravinchandran et al [16], as presented in 
Table 2. 

Table 2: Validation parameters for an acceptable QSAR model Ravinchandran et al [16] 
 

S/N Symbol Name Range 
1 R2 Coefficient of determination ≥ 0.6 
2 Q2 Gross validation coefficient > 0.5 
3 R2 pred. Coefficient of determination for external test set  ≥ 0.6 
4 R2 adj Adjusted square correlation coefficient > 0.5 
5 p (95%) Confidence interval at 95%  ≤ 0.05 
6 Next test set Minimum number of extend test set ≥ 5 
7 R2 – Q2 Difference between R2 and Q2 ≤ 0.3 

 
Table 3: Training set with their Experimental, Predicted and Residual Toxicity Values in log (1/EC50) 

 
S/N Chemical Names Experimental Values Predicted Values Residual Values 
1 1-ChlorodibenzodioxinS 5.500 5.650 -0.150 
2 2,8Dichlorodibenzodioxin 4.890 4.883 0.006 
3 1,2,4-Trichlorodibenzodioxin 7.150 7.670 -0.520 
4 2,3,7-Trichlorodibenzodioxin 6.660 6.431 0.228 
5 2,3,6-Trichlorodibenzodioxin 5.890 5.638 0.251 
6 1,2,3,4-Teterachlorodibenzodioxin 6.100 6.042 0.057 
7 1,3,7,8-Teterachlorodibenzodioxin 6.800 6.844 -0.044 
8 1,2,3,7,8-Pentachlorodibenzodioxin 7.100 6.611 0.489 
9 1,2,3,4,7-Pentachlorodibenzodioxin 5.190 5.461 -0.271 
10 1,2,3,4,6,7,8,9-Octachlorodibenzodioxin 5.000 5.165 -0.165 
11 2,8-Dibromo-3,7-dichlorodibenzodioxin 9.350 9.217 0.133 
12 1,3,7,8,9-Pentabromodibenzodioxin 7.030 6.826 0.203 
13 1,2,4,7,8-Pentabromodibenzodioxin 7.770 7.832 -0.062 
14 1,2,3,7,8-Pentabromodibenzodioxin 8.180 8.404 -0.224 
15 1,3,7,8-Tetrabromodibenzodioxin 8.700 8.607 0.093 
16 2,3,7-Tribromodibenzodioxin 8.930 8.888 0.042 
17 2-Bromodibenzodioxin 6.530 6.596 -0.066 
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3.0 QSAR Results  
A QSAR study was carried out for a set of 25 PCDDs compounds in order to determine a quantitative relationship 
between structures and toxicity. Dataset Division GUI v 1.2 software was employed to divide the data set of 25 
studied compounds into a training set of 17 PCDDs (70%) which was used to build the model and a prediction set 
(test set) of 8 PCDDs (30%), which was applied to test the built model. The below Table 3 and Table 4 represent the 
training set and Test set of the studied compounds with their corresponding experimental, predicted and residual 
values in log (1/EC50) respectively. 
 
From the Table 3, it is obvious that compound numbered-2 (2, 8-Dichlorodibenzodioxin) is best predicted 
evidenced by its predicted value to be the closest to the experimental value compared to all other compounds in the 
set and also with the lowest positive residual value. 
 

Table 4. Test set with their Experimental, Predicted and Residual Toxicity Values in log (1/EC50) 
 

S/N Chemical Names Toxicity  Predicted Residual 
1 1-ChlorodibenzodioxinS 4.000 4.528 -0.528 
2 2,3,7,8-Teterachlorodibenzodioxin 8.000 8.083 -0.083 
3 1,2,4,7,8-Pentachlorodibenzodioxin 5.960 5.529 0.431 
4 1,2,3,4,7,8-Hexachlorodibenzodioxin 6.550 5.444 1.106 
5 2,3,7,8-Tetrabromodibenzodioxin 8.820 9.662 -0.842 
6 2,3-Dibromo-7,8-dichlorodibenzodioxin 8.830 9.154 -0.324 
7 2-Bromo-3,7,8-Trichlorodibenzodioxin 7.940 8.715 -0.775 
8 2,7-Dibromodibenzodioxin 7.810 8.784 -0.974 

 
As can be seen in the Table 3 and Table 4 above, the predicted values are in good agreement with the corresponding 
experimental values because of their low residual values. 
 
The GFA analysis generates five (5) models out of which the most statistically significant model (model-1) was 
selected as presented in Table 5. A brief description of the descriptors in the model is shown in Table 6. The 
statistical parameters of the model is presented in Table 7. 
 

Table 5: Most statistically significant model; Model-1 
 

S/N Equation Definition 
1. Y =  8.018 * X33  

     - 4.224* X74  
     + 8.336 * X182  
     + 8.803 * X186  
     - 3.808 

X33 : ATS7v 
X74 : AATS3m 
X182 : ATSC3s 
X186 : ATSC7s 

 
Table 6. Brief description of the selected descriptors of the best model-1 

 
Descriptor Regression coefficient Description Descriptor Class 
ATS7v 8.018 Broto-Moreau autocorrelation - lag 7 / weighted by van der Waals volumes Autocorrelation Descriptor 
AATS3m - 4.224 Average Broto-Moreau autocorrelation - lag 3 / weighted by mass Autocorrelation Descriptor 
ATSC3s      8.336 Centered Broto-Moreau autocorrelation - lag 3 / weighted by I-state Autocorrelation Descriptor 
ATSC7s       8.803 Centered Broto-Moreau autocorrelation - lag 7 / weighted by I-state Autocorrelation Descriptor 

  
Table 7. Statistical parameters of the model 

 
Model R2 R2

adj R2
pred R2

cv Friedman LOF 
1 0.971 0.961 0.884 0.922 0.344 

 
The results in Table 7 are in good agreement with minimum acceptable parameters of a QSAR model as reported in 
Table 2.  
 
The scattered plot between the experimental and predicted log (1/EC50) of test set (External set validation) and 
training set (Internal set validation) were presented in Fig 1 and Fig 2. Also, the scattered plot of predicted versus 
experimental log (1/EC50) for all of the 25 compounds studied (training and test set) is shown in Fig 3. 
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Fig 1: A graphical representation of the model-1 Validation (Test Set) 

 

 
Fig 2: A graphical representation of the model-1 (Training Set) 

 

 
Fig 3: A graphical representation of predicted log (1/EC50) (training & test set) versus experimental log (I/EC50) values by GFA modeling. 



Sabitu Babatunde Olasupo et al                             J. Comput. Methods Mol. Des., 2016, 6 (2):1-12  
______________________________________________________________________________ 

10 
Available online at www.scholarsresearchlibrary.com 

3.1 Evaluation of the GFA model 
3.1.1. Y-randomization 
The robustness GFA model was tested by applying Y-randomization. The results of Y-randomization test are 
presented in Table 7. Random models parameters are shown in Table 8. 
 

Table 7: The results of Y-randomization of the Training set 
 

Model R R^2 Q^2 
Original 0.919 0.846 0.659 
Random 1 0.551 0.303 -0.271 

 
Table 8: Random models parameters 

 
Average R : 0.352 
Average r^2 : 0.137 
Average Q^2 : -0.556 
cRp^2 : 0.782 

 
3.1.1 Applicability Domain (AD) 
The model was further validated by applying the Williams plot, the plot of the standardized residuals versus the 
leverage as shown in Fig 4. This was exploited to visualize the applicability domain (AD) [17]. Leverage indicates 
a compound’s distance from the centroid of X. The leverage of a compound in the original space is defined as; 
 

hi =    

 

Where  the descriptor vector of the considered compound and X is the descriptor matrix derived from the training 

set descriptor values. 
 
The warning leverage (h*) is defined as: 
 

h   

 
Where  n = number of training compounds  
p = number of predictor variables 
 

 
 

Fig 4: Williams plot of the model 

T T 

 

*
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From the Williams plot in (fig 4) above, it is obvious that compound in the test set fall inside the domain of the GFA 
model (the warning leverage h* =0.60). There are only three compounds (one in the training set and two in the test 
set) which have the leverage higher than the warning h* value, thus they can be regarded as structural outliers. 
 

DISCUSSION 
 

The model reported in Table – 5 represents most statistically significant model of GFA analysis (R2
=0.971, R2

Adj= 
0.961, R2

cv = 0.922, Friedman LOF= 0.344) and are in good agreement with statistical parameters reported in Table 
2, this shows the goodness and reliability of the model. A comparison of the predicted toxicities with the 
experimental log (I/EC50) reported in Table 3 indicated high predictability of the model evidenced by low residual 
values observed in the Table. The compound No 2 (2,8 – Dichlorodibenzo dioxin) is best predicted in the series 
obvious by its lowest positive residual value. The predicted toxicities of test set in log (I/EC50) in Table – 4 are in 
good agreement with the experimental values (R2

Pred= 0.884).  The robustness of the proposed models and its 
predictive ability were also guaranteed by the results of Y-randomization test presented in Table 7 and that of 
random models parameters presented in Table 8. The low R2 and Q2 values that were obtained proved the robustness 
of the model and that the good result in the original model is not due to a chance correlation or structural 
dependency of the training set. The fact that the cR2p value of the model is > 0.5 as  reported in Table 8 is a good 
confirmation that the model is robust and promising [18] . 
 
A Comparison of the validation parameters of the best model with the acceptable standard proposed by 
Ravinchandra et al; reported in Table 2 shows that the parameters are in excellent agreement with the standard as R2 
= 0.971, R2

adj = 0.961, R2pred = 0.884, Q2 = 0.961, Friedman LOF = 0.344. This further authenticates the goodness 
and reliability of the model. The scattered plot of experimental toxicities versus predicted log (I/EC50)  is shown in 
Fig 1 for the test set and Fig 2 for the training set  with the R2Pred= 0.8848 which is in agreement with GFA derived 
R2 value, this also confirms the reliability of the model. Also, Fig 3 shows the predicted versus experimental log 
(I/EC50) for all of the 25 compounds studied, the training set and the test set. As can be seen, the predicted log (I/EC50) 
values are in good agreement with the experimental log (I/EC50) values.  
 
Furthermore, the Williams plot, the plot of the standardize residuals versus the leverage as shown in Fig 4 was 
exploited to visualize the applicability domain (AD) [17]. From the plot shown in Fig 4, it is obvious that compound 
in the test set fall inside the domain of the GFA model (the warning leverage h* =0.60). There are only three 
compounds (one in the training set and two in the test set) which have the leverage higher than the warning h* 
value, thus they can be regarded as structural outliers. 
3.3.1. Descriptors Contribution 
Adrian Beteringhe and Alexandru T.B [19] 2004, reported that Topological charge index of order 3 (GGI3) and 
Hydrophilic factor (Hy) are among the descriptors that are responsible for toxicity of Polychlorinated 
dibenzodioxins. Lakhlifi et al., [20] 2014, reported that Total energy (ET), energy EHOMO, energy ELUMO, activation 
energy Ea, the dipole moment N and the factor of oscillation f(so) play an important role for the toxicity of 
Polychlorinated dibenzodioxins. 
 
Apart from the descriptors reported by (Adrian Beteringhe et al, 2004; Lakhlifi et al; 2014) which are found to be 
responsible for toxicity of PCDDs, the present study reveals the following four  Autocorrelation descriptors  
contribute more significantly to the toxicities of Polychlorinated dibenzodioxins as indicated by their regression 
coefficient values. These four  descriptors  are Broto-Moreau autocorrelation - lag 7 / weighted by van der Waals 
volumes (ATS7v), Average Broto-Moreau autocorrelation - lag 3 / weighted by mass (AATS3m), Centered Broto-
Moreau autocorrelation - lag 3 / weighted by I-state (ATSC3s ) and Centered Broto-Moreau autocorrelation - lag 7 / 
weighted by I-state (ATSC7s) as reported in Table 6.The descriptors ATS7v, ATSC3s and ATSC7s all have a 
positive regression coefficient; thereby exhibit positive influence on the log (I/EC50) values of the compounds. Thus 
suggesting that by increasing their values would be favorable to the toxicities of the compounds, this implies that log 
(I/EC50) is directly related to these descriptors. The descriptor AATS3m, Average Broto-Moreau autocorrelation - lag 
3 / weighted by mass displays a negative sign, which indicates that toxicity is inversely related to this descriptor. 
This means by decreasing the value of this descriptor, it will increase log (I/EC50) value of the compounds. The 
Model 1 is presented in Table 5 and the descriptors used are shown in table 6. From the above discussion, it is 
obvious that Atomic van der Waals volumes, atomic mass and I-States in a molecule play an important role in the 
toxicity of compounds.  
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CONCLUSION 
 

In this study, the toxicity of 25 PCCDs were successfully modeled by genetic function algorithm using four selected 
descriptors all belonging to the 2D Autocorrelation descriptors (ATS7v, AATS3m, ATSC3s and ATSC7s ) families. 
These descriptors used relate that Atomic van der Waals volumes, atomic mass and I-States in a molecule proved to 
be important factors controlling the toxicity of PCDDs. The QSAR model shows good reliability, robustness and 
high predictability when verified by internal validation (R2 = 0.971, R2adj = 0.961, R2pred = 0.884, Q2 = 0.961, 
Friedman LOF = 0.344) and also external validation. The proposed QSAR model can be used in the prediction of 
the toxicity of congeneric compounds used in this work in order to guide in the identification of not yet known toxic 
compounds in our laboratory.  
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