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ABSTRACT

A quantitative structure activity relationship (QSAstudy was developed in order to model the tiyxidi dioxin,
specifically toxicity of polyhalogenate /polychlmaied dibenzo-p-dioxins (25PHCDs/ PCDDs).The QSAfem
was constructed, using Genetic Function Algoriti@aiA). The Quantum chemical descriptors were comphted
density functional theory (DFT) at B3LYP/ 6-31G*odi#l-1 with highest statistical significance wakested and it
has squared correlation coefficient?jR=0.971, Cross validated correlation coefficiel@’( = 0.961 and external
prediction ability Fépred = 0.885. The accuracy of the developed model watuated through cross-validation, an
external test set, Y-randomization and applicapitiomain techniques. The result of the presentstidxpected to
be useful to predict and identify other toxic comnpe or to synthesis non-toxic dioxins.

Keywords: QSAR, Dioxins, DFT, GFA, PCDDs.

INTRODUCTION

The prediction of toxicity of environmental pollata or contaminants from their molecular structsrene of the

major aspect of modern toxicology research andtitential toxicity of compounds can equally be ased on the
basis of their physicochemical and biological prtips [1].

Dioxins are polyhalogenated/polychlorinated aromaiompounds formed as by-products of various inthist
processes (such as incomplete combustion of orgaorigpounds containing chlorine, medical/municipalstes

incineration etc.) and commonly regarded as higialyic compounds that are environmental pollutansl a
persistent organic pollutants POPs [2]. The ternoXitls and dioxin-like compound” commonly refers to

polychlorinated dibenzodioxins (PCDDs), poly-chiamied dibenzofurans (PCDFs) and polychlorinatethdmigls
(PCBs) [3].

Dioxins (PCDDs) are characterized by hydrophobieibd lipophilicity, and these characteristics maem to
concentrate in adipose and hepatic tissues andgeemist in an individual for long periods of timé-%]. These
compounds are persistent Organic pollutants (P@Rs)can enter water bodies and accumulate in ssdiments,
biota, humans and food webs, posing significantthereats to humans, animals and the environftgnt
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Among the health effects in humans to dioxins (PGPExposures includes, immunotoxicity, developrakand
neuron developmental effects, and changes in tthynd steroid hormones and reproductive functi¢iThérefore,
investigation on toxicity of PCDDs are of great onance as to understand the risk attached to éxpiosure to
human health, animals and to the environment.

The study of the quantitative relationship betweetivity/toxicity and molecular structure (QSAR/QR)Tis an
important aspect of research in computational ch&gnibeing used in the prediction of toxicity aniblbgical
activities of organic compounds [8, 9]. Previougdgts have also reported several toxic effectshitdu by the
dioxin like compounds [10].

In the present study, the main goal was to buil@2AR model for description and prediction of totigs of
polyhalogenated/ polychlorinated dibenzodioxins (B¥4/PCCDs) using Genetic Function Approximation ABF
Algorithm approach. The proposed method was vailatising several strategies: Cross validation, Y-
randomization, and externally validated using donsof the entire data set into training data set @st data sets.

MATERIALSAND METHODS
2.1 Data set
To build a QSAR model for Toxicity of Polychlorireat dibenzodioxins series, a data set of 25 PCDBgoands
were taken from literature [11] with the experinanibg ¢/ECso) values. The studied compounds with their
corresponding experimental lofECso) values is shown in Tablel.

Tablel: Chemical structuresand experimental log ('/ECsg) valuesfor studied compounds

SIN IUPAC NAME/CHEMICAL STRUCTURE TOXICITY
log(1/EGy)
1 4.00

Cl
: :O: i
©) 1-ChlorodibenzodioxinS

2 Cl< : O : Cl 5.50
0]

2,8-
Dichlorodibenzodioxi

4.89

coes

1,2,4-Trichlorodibenzodioxin
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Z 0 Cl 715
olld : :o: : :CI

2,3,*Trichlorodibenzodioxi

5 Cl 6.66
CI: : O f
Cl @)
2,3,6-Trichlorodibenzodioxin
6 Cl 5.89
0] Cl
(0] Cl
Cl
1,2,3,4-Teterachlorodibenzodioxin
7 Cl 6.10
CI: : O f
Cl 0] Cl
1,3,7,8-Teterachlorodibenzodioxin
8 6.80

Cl
CI: : O f Cl
Cl 0]

2,3,6,7-Teterachlorodibenzodioxin

9 CI: : O : :CI 8.00
Cl 0] Cl

2,3,7,8-Teterachlorodibenzodioxin
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10 Cl 7.10
CI: : O f :CI
Cl O Cl
1,2,3,7,8-Pentachlorodibenzodioxin
11 Cl 5.19
: :O Cl
Cl 0] Cl
Cl
1,2,3,4,-Pentachlorodibenzodiox
12 Cl 5.96
cl 0 P cl
Cl @)
Cl
1,2,4,7,8-Pentachlorodibenzodioxin
13 Cl 6.55
cl 0 P cl
Cl @) Cl
Cl
1,2,3,4,7,8-Hexachlorodibenzodioxin
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14 Cl Cl 5.00
Cl 0] Cl
Cl 0] Cl
Cl Cl
1,2,3,4,6,7,8,9-Octachlorodibenzodioxin
15 Br (0] Br 8.82
Br: : 0] : Br
2,3,7,8-Tetrabromodibenzodioxin
16 Cl (o) Br 8.83
CI: : (0] : Br
2,3-Dibromo-7,8-dichlorodibenzodioxin
17 Br (o) Br 9.35
CIj : (0] : Cl
2,8-Dibromo-3,7-dichlorodibenzodioxin
18 Cl (@] Br 7.94
CI: : (0] : Cl
2-Bromo-3,7,8-Trichlorodibenzodioxin
19 7.03

Br Br
f O f :Br
Br (@] Br

1,3,7,8,9-Pentabromodibenzodioxin
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20 Br 7.77
Br O / Br
Br (0]
Br
1,2,4,7,8-Pentabromodibenzodioxin
21 Br 8.18
Br 0] / Br
Br O Br
1,2,3,7,8-Pentabromodibenzodioxin
22 Br 8.70
Brj : O f
Br (@) Br
1,3,7,8-Tetrabromodibenzodioxin
23 (o) Br 8.93
Br- : (0] : Br
2,3,7-Tribromodibenzodioxin
24 o) : Br 7.81
Br- : (0]
2,7-Dibromodibenzodioxin
25 o) Br 6.53
O

2-Bromodibenzodioxin
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2.2 Geometry optimization and calculation of molecular descriptors:

Molecular structure of all the compounds were dravging ChemDraw ultra [12] version 12.02 moduletioé
program and subsequently imported into Wave funcpoogram Spartan “14” [13] version 1.2.2 for wttural
minimization. The geometries of all the 25 molesutd PCDDS were optimized with density functiona¢dry
(DFT) method at the B3LYP level of theory and 6-3HS the basis set.

2.21 Model generation:

The structures of 25 Polychlorinated dibenzodioXts PCDDs) were studied by statistical methodetham the
Genetic Function Algorithm technique to develop #ie models. A peculiar features of genetic functio
approximation (GFA) algorithm is that it generatpapulation of equations rather than a single equats do most
other statistical methods.

The range of variation in this population gives edidnformation on the quality of fit and importanoé the
descriptors [14]. The lack- of- fit (LOF) used hére. the fitness function was the leave one-oosgrvalidated
correlation coefficient (Qoo) to estimate the quality of the model. This iscosdted by

L5E
= i-lc+a-Plz @
M
Where c= number of basic function
d= smoothing parameter
m= number of samples in the training set
LSE = least square error
P = total number of features contained in all bafinctions [15]

LOF

2.3 Validation of QSAR models.
The predictive ability of the developed QSAR modare evaluated using both internal and externadistital
validation parameters for a generally acceptabla®8Biodel proposed by Ravinchandran et al [16],rasgnted in
Table 2.

Table 2: Validation parametersfor an acceptable QSAR model Ravinchandran et al [16]

SIN Symbol Name Range

1 R Coefficient of determination >0.6

2 Q Gross validation coefficient >0.5
3 R pred. Coefficient of determination for externaktest | > 0.6

4 R adj Adjusted square correlation coefficient >0.5
5 p (95%) Confidence interval at 95% <0.05

6 Next test sef  Minimum number of extend test set >5

7 R-Q Difference between®and G <0.3

Table 3: Training set with their Experimental, Predicted and Residual Toxicity Valuesin log (YECso)

SIN Chemical Names Experimental Values | Predicted Values | Residual Values
1 1-ChlorodibenzodioxinS 5.500 5.650 -0.150
2 2,8Dichlorodibenzodioxin 4.890 4.883 0.006
3 1,2,4-Trichlorodibenzodioxin 7.150 7.670 -0.520
4 2,3,7-Trichlorodibenzodioxin 6.660 6.431 0.228
5 2,3,6-Trichlorodibenzodioxin 5.890 5.638 0.251
6 1,2,3,4-Teterachlorodibenzodioxin 6.100 6.042 50.0
7 1,3,7,8-Teterachlorodibenzodioxin 6.800 6.844 049.

8 1,2,3,7,8-Pentachlorodibenzodioxin 7.100 6.611 489.

9 1,2,3,4,7-Pentachlorodibenzodioxin 5.190 5.461 27D
10 1,2,3,4,6,7,8,9-Octachlorodibenzodioxin 5.000 165. -0.165
11 2,8-Dibromo-3,7-dichlorodibenzodioxin 9.350 F21 0.133

12 1,3,7,8,9-Pentabromodibenzodioxin 7.030 6.826 203.
13 1,2,4,7,8-Pentabromodibenzodioxin 7.770 7.832 .06
14 1,2,3,7,8-Pentabromodibenzodioxin 8.180 8.404 224
15 1,3,7,8-Tetrabromodibenzodioxin 8.700 8.607 8.09
16 2,3,7-Tribromodibenzodioxin 8.930 8.888 0.042
17 2-Bromodibenzodioxin 6.530 6.596 -0.066
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3.0 QSAR Results

A QSAR study was carried out for a set of 25 PC@Dspounds in order to determine a quantitativeticelahip

between structures and toxicity. Dataset Divisiddl ® 1.2 software was employed to divide the dabhaf 25

studied compounds into a training set of 17 PCDIM¥4) which was used to build the model and a ptiedicset

(test set) of 8 PCDDs (30%), which was appliecest the built model. The below Table 3 and Tableptesent the
training set and Test set of the studied compoumitts their corresponding experimental, predicted assidual

values inlog (/ECso) respectively.

From the Table 3, it is obvious that compound numte (2, 8-Dichlorodibenzodioxin) is best predicted
evidenced by its predicted value to be the closetite experimental value compared to all otherpaunds in the
set and also with the lowest positive residual @alu

Table4. Test set with their Experimental, Predicted and Residual Toxicity Valuesin log (YECso)

S/N | Chemical Names Toxicity | Predicted | Residual
1 1-ChlorodibenzodioxinS 4.000 4.528 -0.528
2 2,3,7,8-Teterachlorodibenzodioxin 8.000 8.083 088.

3 1,2,4,7,+-Pentachlorodibenzodiox 5.96( 5.52¢ 0.431

4 1,2,3,4,7,8-Hexachlorodibenzodioxin 6.550 5.444 .10&

5 2,3,7,8-Tetrabromodibenzodioxin 8.820 9.662 -0.84
6 2,3-Dibromo-7,8-dichlorodibenzodioxin  8.830 9.154 | -0.324

7 2-Bromo-3,7,8-Trichlorodibenzodioxin| 7.940 8.715 | -0.775

8 2,7-Dibromodibenzodioxi 7.81( 8.78¢ -0.97¢

As can be seen in the Table 3 and Table 4 aboggrticted values are in good agreement with eheesponding
experimental values because of their low residahles.

The GFA analysis generates five (5) models out bictwv the most statistically significant model (mbdg was
selected as presented in Table 5. A brief desoriptif the descriptors in the model is shown in €abl The
statistical parameters of the model is presentdabie 7.

Table5: Mog statistically significant model; M odel-1

S/N | Equatior Definition
1. Y = 8.018 * X33 | X33:ATS7v
-4.224* X74 X74 : AATS3m

+8.336 * X182
+8.803 * X186

X182 : ATSC3s
X186 : ATSC7s

- 3.808

Table6. Brief description of the selected descriptors of the best model-1

Descriptor | Regression coefficient  Description Descriptor Class

ATS7v 8.018 Broto-Moreau autocorrelation - lagwelghted by van der Waals volumés  Autocorrelati@s®iptor
AATS3m | -4.224 Average Broto-Moreau autocorrelatideny 3 / weighted by mass Autocorrelation Degorip
ATSC3s¢ 8.33¢ Centered Brot-Moreau autocorrelatio- lag 3 / weighted by-state Autocorrelatiol Descripto
ATSCT7s 8.803 Centered Broto-Moreau autocatitel - lag 7 / weighted by I-state Autocorrelatescriptor

Table 7. Statistical parameters of the model

Rla;
0.961

Friedman LOF
0.344

R’
0.92p

Model | R?
1 0.971

Rpred
0.884

The results in Table 7 are in good agreement witimum acceptable parameters of a QSAR model astegbin
Table 2.

The scattered plot between the experimental andiqiesl log {/ECs) of test set (External set validation) and

training set (Internal set validation) were presdnin Fig 1 and Fig 2. Also, the scattered plopdicted versus
experimental log(ECso) for all of the 25 compounds studied (training &est set) is shown in Fig 3.
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3.1 Evaluation of the GFA model

3.1.1.Y-randomization

The robustness GFA model was tested by applyingndeomization. The results of Y-randomization test a
presented in Table 7. Random models parametesharen in Table 8.

Table 7: Theresultsof Y-randomization of the Training set

Model R R"2 Qn2
Original 0.919| 0.846 0.659
Random 1| 0.55] 0.308 -0.271

Table 8: Random models parameters

Average R : 0.352
Average 2 : 0.137
Average Q"2 | -0.55¢
cRp"2 0.782

3.1.1Applicability Domain (AD)

The model was further validated by applying Wéliams plot, the plot of the standardized residuals versus the
leverage as shown in Fig 4. This was exploited to visualize the applicabilitymain (AD) [17]. Leverage indicates
a compound’s distance from the centroid of X. Tdvetage of a compound in the original space isddfas;

hi = xi (X E’)‘lxi
Wherex i the descriptor vector of the considered compoumithis the descriptor matrix derived from the niag
set descriptor values.

The warning leverage (h*) is defined as:

=3 (P+1)

Where n = number of training compounds
p = number of predictor variables

Standardized residuals
®
®
®

Leverage

® SR Train O Test

Fig 4: Williamsplot of the model
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From the Williams plot in (fig 4) above, it is olovis that compound in the test set fall inside thmain of the GFA
model (the warning leverage h* =0.60). There arg three compoundwfie in the training set and two in the test
set) which have the leverage higher than the warningditie, thus they can be regarded as structurbérmut

DISCUSSION

The model reported in Table — 5 represents mogstitally significant model of GFA analysis {®.971, F§Ad,-:
0.961, B, = 0.922, Friedman LOF= 0.344) and are in good agese with statistical parameters reported in Table
2, this shows the goodness and reliability of thedeh. A comparison of the predicted toxicities witte
experimental log'{ecsg reported in Table 3 indicated high predictabilifythe model evidenced by low residual
values observed in the Table. The compound N@,2 — Dichlorodibenzo dioxinis best predicted in the series
obvious by its lowest positive residual value. Firedicted toxicities of test set in loetsg in Table — 4 are in
good agreement with the experimental value$ (R 0.884). The robustness of the proposed modaisitan
predictive ability were also guaranteed by the Itesof Y-randomization test presented in Table @ #mat of
random models parameters presented in Table 8loWhB? and G values that were obtained proved the robustness
of the model and that the good result in the odbimodel is not due to a chance correlation orcstral
dependency of the training set. The fact that @ walue of the model is > 0.5 as reported in Ta&bis a good
confirmation that the model is robust and promigit] .

A Comparison of the validation parameters of thestbmodel with the acceptable standard proposed by
Ravinchandra et al; reported in Table 2 showsttiaparameters are in excellent agreement witlstdredard as R

= 0.971, R,y = 0.961, R,q= 0.884, @ = 0.961, Friedman LOF = 0.344. This further autlzates the goodness
and reliability of the model. The scattered plotesperimental toxicities versus predicted 18gctg) is shown in

Fig 1 for the test set and Fig 2 for the trainieg) svith the Rs.q-0.8848 which is in agreement with GFA derived
R? value, this also confirms the reliability of theodel. Also, Fig 3 shows the predicted versus expemial log
(‘ecso for all of the 25 compounds studied, the traingeg and the test set. As can be seen, the prédagd/ccso
values are in good agreement with the experiméogal/ccso values.

Furthermore, the Williams plot, the plot of therstardize residuals versus the leverage as showkigidt was
exploited to visualize the applicability domain (A[27]. From the plot shown in Fig 4, it is obviotlsat compound
in the test set fall inside the domain of the GFAdel (the warning leverage h* =0.60). There arey dhfee
compoundsdne in the training set and two in the test set) which have the leverage higher than the warning h*
value, thus they can be regarded as structuraeait!

3.3.1. Descriptors Contribution

Adrian Beteringhe and Alexandru T.B [19] 2004, népd that Topological charge index of order 3 (§Gind
Hydrophilic factor (Hy) are among the descriptofisatt are responsible for toxicity of Polychlorinated
dibenzodioxins. Lakhlifi et al., [20] 2014, repadtéhat Total energy (&, energy Eomo, €nergy Eyvo, activation
energy Ea, the dipole moment N and the factor afllaton f(so) play an important role for the toity of
Polychlorinated dibenzodioxins.

Apart from the descriptors reported by (Adrian Bigighe et al, 2004; Lakhlifi et al; 2014) which doand to be
responsible for toxicity of PCDDs, the present gtudveals the following four Autocorrelation ddptors
contribute more significantly to the toxicities Bblychlorinated dibenzodioxins as indicated by rthregression
coefficient values. These four descriptors aret®Moreau autocorrelation - lag 7 / weighted by ver Waals
volumes (ATS7v), Average Broto-Moreau autocorrelati lag 3 / weighted by mass (AATS3m), Centeredtd@r
Moreau autocorrelation - lag 3 / weighted by I-stg&TSC3s ) and Centered Broto-Moreau autocoralatilag 7 /
weighted by I-state (ATSC7s) as reported in TablEhé descriptors ATS7v, ATSC3s and ATSC7s all have
positive regression coefficient; thereby exhibisitioe influence on the lod/gcs) values of the compounds. Thus
suggesting that by increasing their values woulfalverable to the toxicities of the compounds, thiplies that log
(‘Iecs is directly related to these descriptors. Thecdptor AATS3m, Average Broto-Moreau autocorrelatiolag

3 / weighted by mass displays a negative sign, lwhidicates that toxicity is inversely related kistdescriptor.
This means by decreasing the value of this desurifit will increase log '(ecsg value of the compounds. The
Model 1 is presented in Table 5 and the descripteed are shown in table 6. From the above dismussiis
obvious that Atomic van der Waals volumes, atomassnand I-States in a molecule play an importdetirothe
toxicity of compounds.
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CONCLUSION

In this study, the toxicity of 25 PCCDs were sustaly modeled by genetic function algorithm usfiogr selected
descriptors all belonging to the 2D Autocorrelattescriptors (ATS7v, AATS3m, ATSC3s and ATSC7snifees.

These descriptors used relate that Atomic van daal$Wwolumes, atomic mass and I-States in a maeualved to
be important factors controlling the toxicity of BDs. The QSAR model shows good reliability, robess and
high predictability when verified by internal valition (R = 0.971, R,y = 0.961, R,q = 0.884, @ = 0.961,
Friedman LOF = 0.344) and also external validatibime proposed QSAR model can be used in the prexdliof

the toxicity of congeneric compounds used in thiskin order to guide in the identification of natt known toxic
compounds in our laboratory.
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