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ABSTRACT

A set of 28 anti-Candida albicans Schiff bases t&ir Ni(Il) complexes with their experimental rigedlethal
dose (LRy) were selected for OD, 1D, 2D and 3D quantitatsbeicture activity relationship (QSAR) analysis by
means of Density Functional Theory using the B3i¥1Rion and 6-31Gbasis set. The computed descriptors were
correlated with their experimental B Genetic function approximation (GFA) method analtMinear regression
analysis (MLR) was used to derive the most stetiltyi significant QSAR model. Among the obtainedR&odels,
the most statistically significant one was a tgte@ametric linear equation with the squared cort&a coefficient

R? value of 0.9464, adjusted squared correlation ficient Rzadj value of 0.9321 and Leave one out (LOO) cross
validation coefficient (€) value of 0.9010. An external set was used fofficnimg the predictive power of the
model, its I%)red: 0.7621. It is envisaged that the QSAR resultatifled in this study will offer important strucalr
insight into designing novel less toxic anti-Caradalbicans drugs from Schiff base and their ni¢k@lcomplexes.

Keywords: QSAR, LDy, GFA, MLR, nickel-schiff base complexes, Candit@cans.

INTRODUCTION

In the past 25 years, the incidence of microbitddtions has increased at alarming level over thddnas result of
antimicrobial resistance. A growing number of imratcompromised patients as a result of cancer cheray,

organ transplantation, and HIV infection are thgan&ctors contributing to this increase [1]. Tlés therefore an
urgent need to search and synthesize new classtiofierobial compounds that are less toxic andatife against
pathogenic microorganisms that developed resistemtte antibiotics used in the current regimen.

Of major concern is the pace of resistanc€aifidida albicango the existing anti-biotics. This fungus can la®
harmless commensal in many different body locatians is carried in almost half of the populatiblowever, in
response to a change in the host environnt@nglbicanscan convert from a benign commensal into a disease-
causing pathogen, causing infections in the ortrgintestinal and genital tracts. It is opporstini pathogens for
some immune-compromised people. It is responsdy@dinful mucosal infections such as vaginitisviomen and
oral pharyngeal thrush in AIDS patients. In certgioup of vulnerable patients, it causes sevefethireatening
blood stream infections (candidemia) and subsequoéattions in the internal organs (37).

For developing potential antibiotics that could kcwhe emerging trend dof. albicansresistance to the existing
antibiotics, Schiff base and its complexes withkaldii) ion are considered to be among the mogtartant stereo -
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chemical models due to their preparative accest§itsitructural varieties and high activities agaithis fungi [2; 3;
4;9; 11, 12; 13; 14, 15; 16; 17; 29; 30; 31; 32].

However, rational prediction of the toxicities aftaCandida albicansSchiff bases and their nickel (Il) complexes
after and even prior to their synthesis using Q3A&del is undoubtedly a right step in the right dii@n in the
discovery and development of novel anti-Candidaldr Novel medicines are typically developed usirigal and
error approach, which is time consuming and codthe application of quantitative structure activiglationship
(QSAR) methodologies to this problem has potertiladecrease substantially the time and effort meguio
discover new medicines or to improve current ometeims of their efficacy. QSAR establishes theheatatical
relationship between physical, chemical, biological environmental activities of interest and meablg or
computable parameters such as topological, phyls&oical, stereo chemical or electronic indices [5].

The aim of this study is to develop good and raid@SAR mathematical model that can predict togai§cant
accuracy the toxicity (LE) of anti-Candida albicansSchiff bases and their Ni (II) complexes.

MATERIALS AND METHODS

2.1 Materials

The materials used in this study include; H.P 6&tguter system (Intel Pentium), 2.43GHz proces$GB ram
size on Microsoft windows 7 Ultimate operating gyst Spartan 14 V.1.1.0, Chm 3D Pro 12.0.1V, Padstiiptor
tool kit and Microsoft office Excel 2013 versionAnalyze i Statistical software, Material Studio (modelingdan
simulation software) version 7.0, and Printer.

2.2 Computational Methodology

Chemdraw ultra software was used to draw the stractf the compounds in the data set and eachtsteuwas
saved aMDL file. The Spartan 14 V.1.1.0 soft ware was usedHe optimization of the molecules. The molecules
were first pre-optimized with the Semi-empiricalMA) procedure included in Spartan’14 V1.1.0 softevand the
resulting geometries were further refined by meainBensity functional theory (DFT) using the B3L¥frsion
and 6-31G basis set. The lowest energy structure was usedach molecule to calculate their physicochemical
properties. The quantum chemical descriptors wateutated using the Spartan’l4 V.1.1.0 quantum d$teyn
packagePadel descriptotool kit was used to calculate 1D, 2D and 3D dpsars as well.

2.3 QSAR methodology

In the present study, we have performed the QSARied by Hansch’s analysis using the linear freergsn
relationship (LFER) model described by Hansch angitd&= In Hansch’'s approach, structural propertads
compounds are calculated in terms of different moghemical parameters and these parameters amdated with
biological activity through equation using regressanalysis [19].

2.3.1 Data collection

The chemical structures and experimental medidralghose I(Dsg) values in mg/kg of antiCandida albicans
schiff bases and their nickel complexes were tdkam literature [20; 21; 22; 23; 24; 25; 26; 27h€lLDs, values
of the compounds were converted to logarithmices¢alLDsp) in order to reduce the dispersion of data settand
get linear response and well data fitting. The thota structure, MIC and pMIC values for each membiethe
training set are presented in Table 1.
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TABLE 1: Experimental LDs, values of antiCandida albicans molecules
Cpd. Structure LDso(mg/kg) pLDso
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2.3.2 Descriptor selection

Over 1000 descriptors comprising of 0D, 1D, 2D, &mdtypes were generated for each molecule. Therigésrs
were correlated with the Lfgvalues of the molecules using Pearson’s correlatiatrix. Pearson’s correlation
matrix was used to select the suitable descriptmrsGenetic Function Approximation (GFA) and mditiear
regression (MLR) analysis based on the correlataefficients.

2.3.3 Training set and data set.

The data set for the biological activity was spitb training set and test set. At least 70% ofdata set was used as
training set and the rest as test set in line whh optimum splitting pattern of data set in QSARdy [33].
Consequently, the data set of 28 complexes watsisfi 20 training set and 8 test set. The trairsegwas used to
generate the model while the test set was usedaloae the model’s external prediction ability.
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2.3.4 Regression analysis

Different possible combinations of descriptors weréjected to Genetic Function Approximation (GFa)d
multiple linear regressions (MLR) analysis with tigperimentally determined Lpas dependent variable and the
descriptors as independent variable. Out of theetlstatistically significant generated GFA modeie,best (model-
1) was selected based on the one with the smal@stscore. The MLR equation was generated in stepwianner
by forward selection method starting with best Engariable and adding further significant variabkcording to
their contribution to the model that leads to thealest P-value at 95 percent confidence levelil timére is no
other variable outside the equation that satigfiesselection criteria [28]. The P-values of thedelavas provided
by the Analyze it statistical software at 95% confidence level. Theafue is a probability that measures the
evidence against the null hypothesis. Lower prdiiegsi provide stronger evidence against the nyglidthesis. The
null hypothesis implies that there is no assoamlietween the descriptors and the pMic of the nubdsc Model (1
and 2) gives the best QSAR equations using GFAMIOE analysis respectively.

Use of the Friedman lack-of-fit (LOF) measure hegesal advantages over the regular least squase measure.
In Materials Studio, LOF is measured using a sligintiation of the original Friedman formula [18]hd revised
formula is:

LOF = SSE /1T — 00y e, (1)

M

Where SSE is the sum of squares of errors, c iadher of terms in the model, other than the eomderm, d is a
user-defined smoothing parameter, p is the totatber of descriptors contained in all model terngmdring the
constant term) and M is the number of samplesertithining set. Unlike the commonly used least segineasure,
the LOF measure cannot always be reduced by addang terms to the regression model. While the ream tmay
reduce the SSE, it also increases the values nfl @awhich tends to increase the LOF score. Tadding a new
term may reduce the SSE, but actually increasek@tescore. By limiting the tendency to simply addre terms,
the LOF measure resists over fitting better th&nSBE measure (Materials Studio 5.0 Manual).

2.3.5 Model validation

Validation is a crucial aspect of any QSAR modeliligs the process by which the reliability andexance of a
procedure are established for a specific purposét[ the process of establishing the reliabiind predictivity of

a QSAR model. Both external and internal validagiovere carried out on the model. The validatiorapeaters
were compared with the minimum recommended valueaf@enerally acceptable QSAR model proposed b
Ravinchandran et al. [34] shown in Table 2.

Table 2: Minimum recommended value of Validation Peaameters for a generally acceptable = QSAR model
(Source: Ravinchandran et al., 2011)

Validation Parameter
S/n. | Symbol Name Value
1. R Coefficient of determination >0.6
2. Pesos Confidence interval at 95% confidence level. < 0J05
3. Cross validation coefficient <0.5
4. Rooxt, Coefficient of determination for external test get> 0.6
5. R - | Difference between®and G <0.3
6. Next. testsc | Minimum number of external test set >5

2.3.5.1 Internal validation

This is the validation done using the data thaatee the model. The QSAR models were internallidestd using
the methods of least squares Rf)( cross validation coefficientf), adjusted?® (R’adj), difference between’Rnd
Q? (R? - @) and its confidence interval of all regressionftioient at 95% significant level(value). The values of
these parameters were compared with the minimut@ricn for robust QSAR models proposed by Ravichamet
al. in Table 2.

R? value is interpreted as the proportion of variiio Y that is explained by the model. It is giventhe formulae:

2 _ SSR _ SST-SSE
=38 - Sra @)

SST SSE
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Where SST = total sum of squares, SSR = regressionof squares, and SSE = minimum sum of squasidiuads
of any linear model.

R? value varies directly with the increase in numbémegressors i.e. descriptors, thug, dannot be a useful
measure for the goodness of model fit. ThereforejsRadjusted for the number of explanatory varighte the
model. The adjusted’Rs defined as:

_ -1 _ (n-1)R?>-P
R%q = 1-(1 — R?) # U TR SRUPRON (3)

n-p+1
Where p = number of independent variables in thdeh¢7].

The LOO cross validated coefficient{Q@s given by;

2_ 4 Z(rp-v)?
Q=1 STymE T 4)

Where Yp and Y represent the predicted and obseac#uity respectively of the training set ang, the mean
activity value of the training set.

The predicted’value is calculated as follows;
_a  Zlvpred(te)-Y(te)]*
Pred-R =1 S Ge)ymEeyE s (5)

Ypred.(test) and Y(test) indicate predicted andeolesd activity values respectively of the testa@hpounds and
Ym(tr) indicates mean activity value of the traigiset.

3.3.5.2 External validation

The real predictive ability of anSARmodel cannot be judged solely by using interndidation, it has to be
validated on the basis of predictions of activitidsnolecules not used in the models [34]. Priothi development
of the models, each data set was split into trgirind test set. QSAR models were built using thi@itrg set while
the tests set were used for externally validathggrnodels. The predicted® Rias computed in each case using the
formulae in equation (5).

4.0 QSAR Study Results and Discussion
The best performing QSAR model for the 3@f the complexesising GFA and MLR is represented by model 1
and 2 respectively. The name and symbol of theritecs used in the QSAR model is shown in table 3.

Table 3: The symbol and definition of the descriptrs used in the model

s/n | Descriptor symbo Definition

1 | nBase Number of basic groups

2 | WA.polar Non-directional WHIM, weighted by atongpolarizabilities
3 | WV.polar Non-directional WHIM, weighted by atongolarizabilities
4 | WV mas: Non-directional WHIM, weighted by atomic mas

4.2 Model- 1: GFA Derived Model for pLDsg of Anti-Candidal Complexes.
pLDso= 0.585842864nBase - 0.027523548WA .polar - 0.00824WV.polar + 0.028007450WV.mass
+1.578832691

n = 20, Friedman LOF = 0.0542780F, R0.94637700, fadj. = 0.93207700, & 0.90104700
F-value = 66.18260200, Min. expt.error for non-#igant LOF (95) = 0.11884300
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Figure 1: Effect of model 1
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Figure 2: Residual plot of model 1
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Table 5: Comparison of observed L, and predicted LDs of model 1

cpd | Observed values predicted valyes residuabsal
cl 2.78 2.915194 -0.13519
cll| 3.3 3.335877 -0.03588
c13 | 3.53 3.506082 0.023918
clE | 1.4z 1.60479 -0.174¢
cl6 | 2.78 2.537789 0.242211
cl7| 2 1.913506 0.086494
cl18 | 2.48 2.644023 -0.16402
cl9 | 2.48 2.615787 -0.13579
c2l| 23 2.362829 -0.06283
c2z | 2.4¢ 2.32831: 0.15168!
c2% | 2.4¢ 2.46267. 0.01732
c24 | 2.48 2.269462 0.210538
c25 | 2.48 2.362534 0.117466
c26 | 1.43 1.621528 -0.19153
c27 | 2.18 2.064732 0.115268
c2€ | 1.62 1.65102' -0.0310:
c2€ | 1.4¢ 1.3424: 0.1075¢
c4 | 281 2.90935 -0.09935
c6 1.74 1.888276 -0.14828
c8 | 2.6 2.493808 0.106192
Table 6a: External validation of Model-4a
testcpd| nBase WA.polar WV.polar WV.mass Act.pLDb5@red. pLD50| Residual
ciC 1 51.0239! | 124.902: | 60.7043. | 1.4 1.68018 -0.2801¢
cl2 4 117.9509| 207.3046 150.6583 3.57 3.60015¢ 3608
cl4 4 136.8415| 267.2913 201.8686 3.47 4.13982 9856
c20 0 47.46302| 66.86961 91.59443 1.43 2.420054% 9603
c3 0 109.2176| 315.7378 220.2636  2.79 2.769294 oaR0
c5 0 63.36333| 137.6757 140.3717 2.78 2.906204 60.12
c7 0 148.074. | 405.031! | 301.060" | 3.7 3.404¢ 0.295!
c9 0 41.12801| 96.12118 97.57831 2.6 2.5792671 03R07
Table 6b: External validation of Model-4a
testcpd| Ym(tr) | Y(te) | Ypre(te) | [Ypred.(te) — Y(te)] | [Y(te) — Ym(tn)F
c10 2.3415| 1.40| 1.680683 0.078505 0.886422
cl2 2.3415| 3.57| 3.601014 0.000909 1.509212
cl4 2.341t | 3.47 | 4.14089: | 0.44865! 1.27351;
c20 2.3415| 1.43| 2.42064B 0.980208 0.830832
c3 2.3415| 2.79| 2.770501 0.000429 0.201152
c5 2.3415| 2.78| 2.90699P 0.015927 0.192282
c7 2.3415| 3.70| 3.40647p 0.087084 1.845522
c9 2.3415| 2.60| 2.57985F 0.00043 0.066822
> =1.61215 > =6.80575

Since Pred4=1 -Y[Ypred(te) — Y(te)]/ X[Yte — Ym(tr)F
Pred-f = 1-(1.612151/6.805758) = 0.7631

4.4.5 Model-2: MLR Derived Model for pLDsg of Anti-Candidal Complexes.
pMIC = 1.579 + 0.5858 nBase - 0.02752 WA.polar008247 WV .polar + 0.02801 WV.mass
n =20, R = 0.946, R, = 0.932, RMSE = 0.153@, < 0.0001 at 95% Confidence Level.

Table 7: Effect of terms in model — 2 at 95% confidnce level

Term SS DF| MS F p-value,
nBase 1.681 1 1.681 71.26 <0.0001
WA.polar | 0.981| 1 0.981 41.60 <0.0001
WV.polar | 0.225| 1 0.224 9.53 0.007§
WV.mas: | 3.00¢ | 1 3.00f | 127.37 | <0.000:
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The result of the GFA QSAR model is in conformitjtwthe standard shown in Table 2 a%5=R0.9464, I%adj:
0.9321, @ = 0.9010, R4 = 0.7631. This confirms the robustness of theehod

The comparison of observed and predicted antibattactivities of the complexes is presented inl&dh The
predictability of model-lis evidenced by the low residual values observetdable 5. Also, the plot of predicted
LDso against observed L shown in Fig.1 confirms the robustness of the rhoBerther, the plot of observed
pLDs, versus residual pLfd (Fig.2) indicated that there was no systemic emomodel development as the
propagation of residuals was observed on both sifiesro [8].

The P-value of the model at 95% confidence level showmbdel-2 is < 0.0001. This reveals that the aittéve
hypothesis that there is an association betweeddberiptors used in the model and thed@f the molecules takes
preference over the null hypothesis.

The effect of terms shown in section Table 7 revé¢laht at 95% confidence level, all the descriptorthe model
contribute significantly as their P-values are ligss1 0.05, a requirement at this confidence limit.

The closeness of the values of, R, @ of model obtained from GFA to that obtained thiowdLR, further
reveals the reliability and robustness of the GF&dei.

QSAR derivation indicated that the toxicity of StHiases and their Ni (Il) complexes is stronglyretated with
number of basic group (nBase), non-directional WHiighted by atomic polarizabilities (WV polar and
WA polar), and non-directional WHIM weighted by atic masses (WV. mass). This suggests that theitypx€t
this class of compounds depended on their hydrafikilpolarity as well as their molecular sizes.

However, the toxicity of a molecule varies inveyseith its LDsg, thus the higher the Ldg the lower the toxicity
and vice versa.

The decrease in toxicity with increase in the nundfebasic groups as shown in the models may henaized
thus; as the number of basic group increases imoleamle, the molecule become more hydrophilic ehotg
dissolve in aqueous gastric juice and blood strh

The decrease in toxicity with increase in the nunddebasic group might be as a result of the ingiregasolubility
of the molecule which consequently leads to in@dasvolume of distribution of the molecule in thalogical
system.

WV.polar and WA.polar are WHIM descriptors whichsdebe the polarity of a molecule. The decreasxitity
with decrease in polarity of the molecule as shawthe models may be due to the increase in ligmityi of the
molecules due to reduced polarity, enhancing itetration into the lipophilic biological membranes.

Also, WV.mass is non-directional WHIM descriptor iafh describes the size of the molecule, The deeré@as
toxicity with increasing size of the molecules niseydue to the possibility of the molecule to lrgddy confined to
the plasma compartment because of their largd38iaffecting its distribution via out the body.

CONCLUSION

The generated QSAR models, performed to exploresthetural requirements controlling the observexicity
(LDsg) of Schiff bases and their nickel (Il) complexégited that the toxicity of the molecules were efféel by
directional WHIM descriptors weighted by atomic anatability and the number of basic group. The sihass and
applicability of QSAR equation has been establishgdhternal and external validation techniquess lenvisaged
that the wealth of information in this QSAR modedats predictive power will provide an insightdesigning less
toxic novel bioactive antGandida albicansnolecules.

5.0 Recommendation

In the future design of novel less toxic Schiff &émsnd their Ni (II) complexes as a@@ndida albicangdrug, it is
recommended based on this research that the meteshbuld be made less polar as possible. Alsanthecules
should be made slightly hydrophilic by incorporgtibasic functional groups into the parent moeitidse size of

102
Available online at www.scholarsresearchlibrary.com




J. Philip Ameji et al J. Comput. Methods Mol. Des., 2015, 5 (3):91-103

the molecule should be made optimal by substitubinigier ligands in the parent moieties with a |bstky ligand
or functional groups.
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