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ABSTRACT 
 
A set of 28 anti-Candida albicans  Schiff bases and their Ni(II) complexes with their experimental median lethal 
dose (LD50) were selected for 0D, 1D, 2D and 3D quantitative structure activity relationship (QSAR) analysis by 
means of Density Functional Theory using the B3LYP version and 6-31G*  basis set. The computed descriptors were 
correlated with their experimental LD50. Genetic function approximation (GFA) method and Multi-linear regression 
analysis (MLR) was used to derive the most statistically significant QSAR model. Among the obtained QSAR models, 
the most statistically significant one was a tetra parametric linear equation with the squared correlation coefficient 
R2 value of 0.9464, adjusted squared correlation coefficient R 2adj value of 0.9321 and Leave one out (LOO) cross 
validation coefficient (Q2) value of 0.9010. An external set was used for confirming the predictive power of the 
model, its R2pred = 0.7621. It is envisaged that the QSAR results identified in this study will offer important structural 
insight into designing novel less toxic anti-Candida albicans drugs from Schiff base and their nickel (II) complexes. 
 
Keywords: QSAR, LD50, GFA, MLR, nickel-schiff base complexes, Candida albicans. 
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INTRODUCTION 
 
In the past 25 years, the incidence of microbial infections has increased at alarming level over the world as result of 
antimicrobial resistance. A growing number of immune-compromised patients as a result of cancer chemotherapy, 
organ transplantation, and HIV infection are the major factors contributing to this increase [1]. There is therefore an 
urgent need to search and synthesize new class of antimicrobial compounds that are less toxic and effective against 
pathogenic microorganisms that developed resistance to the antibiotics used in the current regimen.  
 
Of major concern is the pace of resistance of Candida albicans to the existing anti-biotics. This fungus can live as 
harmless commensal in many different body locations, and is carried in almost half of the population. However, in 
response to a change in the host environment, C. albicans can convert from a benign commensal into a disease-
causing pathogen, causing infections in the oral, gastrointestinal and genital tracts. It is opportunistic pathogens for 
some immune-compromised people. It is responsible for painful mucosal infections such as vaginitis in women and 
oral pharyngeal thrush in AIDS patients. In certain group of vulnerable patients, it causes severe, life-threatening 
blood stream infections (candidemia) and subsequent infections in the internal organs (37). 
 
For developing potential antibiotics that could curb the emerging trend of C. albicans resistance to the existing 
antibiotics, Schiff base and its complexes with nickel (ii) ion are considered to be among the most important stereo - 
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chemical models due to their preparative accessibility, structural varieties and high activities against this fungi [2; 3; 
4; 9; 11; 12; 13; 14; 15; 16; 17; 29; 30; 31; 32]. 
 
However, rational prediction of the toxicities of anti-Candida albicans Schiff bases and their nickel (II) complexes 
after and even prior to their synthesis using QSAR model is undoubtedly a right step in the right direction in the 
discovery and development of novel anti-Candidal drugs. Novel medicines are typically developed using a trial and 
error approach, which is time consuming and costly. The application of quantitative structure activity relationship 
(QSAR) methodologies to this problem has potential to decrease substantially the time and effort required to 
discover new medicines or to improve current ones in terms of their efficacy. QSAR establishes the mathematical 
relationship between physical, chemical, biological or environmental activities of interest and measurable or 
computable parameters such as topological, physicochemical, stereo chemical or electronic indices [5]. 
 
The aim of this study is to develop good and rational QSAR mathematical model that can predict to a significant 
accuracy the toxicity (LD50) of anti-Candida albicans Schiff bases and their Ni (II) complexes. 
 

MATERIALS AND METHODS 
 

2.1 Materials 
The materials used in this study include; H.P 650 computer system (Intel Pentium), 2.43GHz processor, 4GB ram 
size on Microsoft windows 7 Ultimate operating system, Spartan 14 V.1.1.0, Chm 3D Pro 12.0.1V, Padel descriptor 
tool kit and Microsoft office Excel 2013 version + Analyze it@ Statistical software, Material Studio (modeling and 
simulation software) version 7.0, and Printer. 
 
2.2 Computational Methodology 
Chemdraw ultra software was used to draw the structure of the compounds in the data set and each structure was 
saved as MDL file. The Spartan 14 V.1.1.0 soft ware was used for the optimization of the molecules. The molecules 
were first pre-optimized with the Semi-empirical (AM1) procedure included in Spartan’14 V1.1.0 soft ware and the 
resulting geometries were further refined by means of Density functional theory (DFT) using the B3LYP version 
and 6-31G*  basis set. The lowest energy structure was used for each molecule to calculate their physicochemical 
properties. The quantum chemical descriptors were calculated using the Spartan’14 V.1.1.0 quantum chemistry 
package. Padel descriptor tool kit was used to calculate 1D, 2D and 3D descriptors as well. 
 
2.3 QSAR methodology 
In the present study, we have performed the QSAR studies by Hansch’s analysis using the linear free energy 
relationship (LFER) model described by Hansch and Fujita. In Hansch’s approach, structural properties of 
compounds are calculated in terms of different physicochemical parameters and these parameters are correlated with 
biological activity through equation using regression analysis [19]. 
 
2.3.1 Data collection 
The chemical structures and experimental median lethal those (LD50) values in mg/kg of anti- Candida albicans 
schiff bases and their nickel complexes were taken from literature [20; 21; 22; 23; 24; 25; 26; 27]. The LD50 values 
of the compounds were converted to logarithmic scale (pLD50) in order to reduce the dispersion of data set and to 
get linear response and well data fitting. The notation, structure, MIC and pMIC values for each member of the 
training set are presented in Table 1.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



J. Philip Ameji  et al                             J. Comput. Methods Mol. Des., 2015, 5 (3):91-103  
______________________________________________________________________________ 

93 
Available online at www.scholarsresearchlibrary.com 

TABLE 1: Experimental LD50 values of anti-Candida albicans molecules 
 

Cpd. Structure 
LD50(mg/kg) 

 
pLD50 

 
 
 

C1 
 

 

 

 
 
 

600 

 
 
 

2.78 
 

 
 
 

C2 

 

 

 
 
 

680 

 
 
 

2.83 

 
 
 
 
 

C3 
 

 

 

 
 
 
 
 

620 

 
 
 
 
 

2.79 

 
 
 
 

C4 
 
 
 

 

 

 
 
 
 

650 

 
 
 
 

2.81 

 
 
 
 

C5 

 

 

 
 
 
 

50 

 
 
 
 

1.70 

 
 
 

C6 

 

 

 
 
 
 

55 

 
 
 
 

1.74 
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C7 

 

 

 
 
 

5000 

 
 
 

3.70 

 
 

C8 

 

 

 
 
 

400 
 
 

 
 
 

2.60 

 
 

C9 

 

 

 
 

400 
 

 
 

2.60 

 
 
 

C10 

 

 

 
 
 
 

25 

 
 
 
 

1.40 

 
 
 

C11 

 

 

 
 
 

2000 

 
 
 

3.30 

 
 
 
 

C12 

 

 

 
 
 
 

3700 

 
 
 
 

3.57 

 
 

 
 
 

 
 



J. Philip Ameji  et al                             J. Comput. Methods Mol. Des., 2015, 5 (3):91-103  
______________________________________________________________________________ 

95 
Available online at www.scholarsresearchlibrary.com 

 
 
 

C13 

 

 
 
 

3380 

 
 
 

3.53 

 
 
 
 
 

C14 

 
 

 

 
 
 
 
 

2950 

 
 
 
 
 

3.47 

 
 

C15 

 

 

 
 

27 

 
 

1.43 

 
 

C16 

 

 

 
 
 

600 

 
 
 

2.78 

 
 
 

C17 

 

 

 
 
 

100 

 
 
 

2.00 

 
 
 

C18 

 

 

 
 
 

300 

 
 
 

2.48 

 
 
 

C19 

 

 
 
 

300 

 
 
 

2.48 
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C20 

 

 

 
 
 
 

27 

 
 
 
 

1.43 

 
 
 
 

C21 

 

 

 
 
 
 

200 

 
 
 
 

2.30 

 
 
 

C22 

 

 

 
 
 

300 

 
 
 

2.48 

 
 

C23 

 

 

 
 
 

300 

 
 
 

2.48 

 
 
 
 

C24 

 

 

 
 
 
 

300 

 
 
 
 

2.48 
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C25 

 

 
 

300 

 
 

2.48 

 
 
 
 
 

C26 

 

 

 
 
 
 
 

27 

 
 
 
 
 

1.43 

 
 

C27 
 
 
 
 
 
 
 

 

 

 
 

150 
 
 
 
 
 
 
 

 
 

2.18 
 
 
 
 
 
 
 

 
 

C28 
 

 

42 1.62 

 
 
 
 

C29 

 

 

 
 
 
 

28 

 
 
 
 

1.45 

 
2.3.2 Descriptor selection 
Over 1000 descriptors comprising of 0D, 1D, 2D, and 3D types were generated for each molecule. The descriptors 
were correlated with the LD50 values of the molecules using Pearson’s correlation matrix. Pearson’s correlation 
matrix was used to select the suitable descriptors for Genetic Function Approximation (GFA) and multi-linear 
regression (MLR) analysis based on the correlation coefficients. 
 
2.3.3 Training set and data set. 
The data set for the biological activity was split into training set and test set. At least 70% of the data set was used as 
training set and the rest as test set in line with the optimum splitting pattern of data set in QSAR study [33]. 
Consequently, the data set of 28 complexes was split into 20 training set and 8 test set. The training set was used to 
generate the model while the test set was used to evaluate the model’s external prediction ability.   
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2.3.4 Regression analysis 
Different possible combinations of descriptors were subjected to Genetic Function Approximation (GFA) and 
multiple linear regressions (MLR) analysis with the experimentally determined LD50 as dependent variable and the 
descriptors as independent variable. Out of the three statistically significant generated GFA models, the best (model-
1) was selected based on the one with the smallest LOF score. The MLR equation was generated in stepwise manner 
by forward selection method starting with best single variable and adding further significant variable according to 
their contribution to the model that leads to the smallest P-value at 95 percent confidence level, until there is no 
other variable outside the equation that satisfies the selection criteria [28]. The P-values of the model was provided 
by the Analyze it® statistical software at 95% confidence level. The p-value is a probability that measures the 
evidence against the null hypothesis. Lower probabilities provide stronger evidence against the null hypothesis. The 
null hypothesis implies that there is no association between the descriptors and the pMic of the molecules. Model (1 
and 2) gives the best QSAR equations using GFA and MLR analysis respectively. 
 
Use of the Friedman lack-of-fit (LOF) measure has several advantages over the regular least square error measure. 
In Materials Studio, LOF is measured using a slight variation of the original Friedman formula [18]. The revised 
formula is: 
 

LOF = SSE / (1 −
����

�
)2 …………………………………………………… (1) 

 
Where SSE is the sum of squares of errors, c is the number of terms in the model, other than the constant term, d is a 
user-defined smoothing parameter, p is the total number of descriptors contained in all model terms (ignoring the 
constant term) and M is the number of samples in the training set. Unlike the commonly used least squares measure, 
the LOF measure cannot always be reduced by adding more terms to the regression model. While the new term may 
reduce the SSE, it also increases the values of c and p, which tends to increase the LOF score. Thus, adding a new 
term may reduce the SSE, but actually increases the LOF score. By limiting the tendency to simply add more terms, 
the LOF measure resists over fitting better than the SSE measure (Materials Studio 5.0 Manual). 
 
2.3.5 Model validation 
Validation is a crucial aspect of any QSAR modeling. It is the process by which the reliability and relevance of a 
procedure are established for a specific purpose [6]. It is the process of establishing the reliability and predictivity of 
a QSAR model. Both external and internal validations were carried out on the model. The validation parameters 
were compared with the minimum recommended value for a generally acceptable QSAR model proposed by 
Ravinchandran et al. [34] shown in Table 2.  

 
Table 2: Minimum recommended value of Validation Parameters for a generally acceptable  QSAR model  

(Source: Ravinchandran et al., 2011) 
 

 
S/n. 

Validation Parameter  
Value Symbol Name 

1. R2 Coefficient of determination ≥ 0.6 
2. P (95%) Confidence interval at 95% confidence level. < 0.05 
3. Q2 Cross validation coefficient ˂ 0.5 
4. R2

ext. Coefficient of determination for external test set ≥ 0.6 
5. R2 - Q2 Difference between R2 and Q2 ≤ 0.3 
6. Next. test set Minimum number of external test set ≥ 5 

 
2.3.5.1 Internal validation 
This is the validation done using the data that created the model. The QSAR models were internally validated using 
the methods of least squares fit (R2), cross validation coefficient (Q2), adjusted R2 (R2adj), difference between R2 and 
Q2 (R2 - Q2) and its confidence interval of all regression coefficient at 95% significant level (α value). The values of 
these parameters were compared with the minimum criterion for robust QSAR models proposed by Ravichandran et 
al. in Table 2. 
R2 value is interpreted as the proportion of variation in Y that is explained by the model. It is given by the formulae:  
 

R2 = 
��	

��

 = 

��
����

���
     ………………………………………………. (2) 
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Where SST = total sum of squares, SSR = regression sum of squares, and SSE = minimum sum of squared residuals 
of any linear model. 
 
R2 value varies directly with the increase in number of regressors i.e. descriptors, thus, R2 cannot be a useful 
measure for the goodness of model fit. Therefore, R2 is adjusted for the number of explanatory variables in the 
model. The adjusted R2 is defined as: 
 

R2
adj = 1- (1 − ��) 

���

�����
 = 

(���)	���

�����
 …………………………………….. (3) 

 
Where p = number of independent variables in the model. [7]. 
 
The LOO cross validated coefficient (Q2) is given by;  

Q2 = 1 - 
∑(����)�

∑(����)�
       ………………………………………………. (4) 

 
Where Yp and Y represent the predicted and observed activity respectively of the training set and Ym the mean 
activity value of the training set. 
 
The predicted r2 value is calculated as follows; 

Pred-R2 =1 – 
∑[�����(��)��(��)]�

∑[�(��)���(��)�
        ................................................................. (5) 

 
Ypred.(test) and Y(test) indicate predicted and observed activity values respectively of the test set compounds and 
Ym(tr) indicates mean activity value of the training set. 
 
3.3.5.2 External validation 
The real predictive ability of any QSAR model cannot be judged solely by using internal validation, it has to be 
validated on the basis of predictions of activities of molecules not used in the models [34]. Prior to the development 
of the models, each data set was split into training and test set. QSAR models were built using the training set while 
the tests set were used for externally validating the models. The predicted R2 was computed in each case using the 
formulae in equation (5). 
 
4.0 QSAR Study Results and Discussion 
The best performing QSAR model for the LD50 of the complexes using GFA and MLR is represented by model 1 
and 2 respectively. The name and symbol of the descriptors used in the QSAR model is shown in table 3. 
 

Table 3: The symbol and definition of the descriptors used in the model 
 

s/n Descriptor symbol Definition 
1 nBase Number of basic groups 
2 WA.polar Non-directional WHIM, weighted by atomic polarizabilities 
3 WV.polar Non-directional WHIM, weighted by atomic polarizabilities 
4 WV mass Non-directional WHIM, weighted by atomic masses 

 
4.2 Model- 1: GFA Derived Model for pLD50 of Anti-Candidal Complexes. 
pLD50 = 0.585842864nBase - 0.027523548WA.polar - 0.006247287WV.polar +  0.028007450WV.mass 
+1.578832691 
 
n = 20, Friedman LOF = 0.05427800, R2 = 0.94637700, R2adj. = 0.93207700, Q2 = 0.90104700 
F-value = 66.18260200, Min. expt.error for non-significant LOF (95) = 0.11884300 
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. 
 

Figure 1: Effect of model 1 
 

. 
 

Figure 2: Residual plot of model 1 
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Table 5: Comparison of observed LD50 and predicted LD50 of model 1 
 

cpd Observed values  predicted values  residual values 
c1 2.78 2.915194 -0.13519 
c11 3.3 3.335877 -0.03588 
c13 3.53 3.506082 0.023918 
c15 1.43 1.604798 -0.1748 
c16 2.78 2.537789 0.242211 
c17 2 1.913506 0.086494 
c18 2.48 2.644023 -0.16402 
c19 2.48 2.615787 -0.13579 
c21 2.3 2.362829 -0.06283 
c22 2.48 2.328314 0.151686 
c23 2.48 2.462673 0.017327 
c24 2.48 2.269462 0.210538 
c25 2.48 2.362534 0.117466 
c26 1.43 1.621528 -0.19153 
c27 2.18 2.064732 0.115268 
c28 1.62 1.651027 -0.03103 
c29 1.45 1.34241 0.10759 
c4 2.81 2.90935 -0.09935 
c6 1.74 1.888276 -0.14828 
c8 2.6 2.493808 0.106192 

 
Table 6a: External validation of Model-4a 

 
test cpd nBase WA.polar WV.polar WV.mass Act.pLD50 pred. pLD50 Residual 
c10 1 51.02399 124.9024 60.70434 1.4 1.680187 -0.28019 
c12 4 117.9509 207.3046 150.6553 3.57 3.600156 -0.03016 
c14 4 136.8415 267.2913 201.8686 3.47 4.13982 -0.66982 
c20 0 47.46302 66.86961 91.59443 1.43 2.420055 -0.99005 
c3 0 109.2176 315.7378 220.2636 2.79 2.769294 0.020706 
c5 0 63.36333 137.6757 140.3717 2.78 2.906203 -0.1262 
c7 0 148.0742 405.0315 301.0607 3.7 3.4049 0.2951 
c9 0 41.12801 96.12118 97.57831 2.6 2.579267 0.020733 

 
Table 6b: External validation of Model-4a 

 
 
test cpd 

 
Ym(tr) 

 
Y(te) 

 
Ypre(te) 

 
[Ypred.(te) – Y(te)]2 

 
[Y(te) – Ym(tr)]2 

c10 2.3415 1.40 1.680683 0.078505 0.886422 
c12 2.3415 3.57 3.601014 0.000909 1.509212 
c14 2.3415 3.47 4.140893 0.448659 1.273512 
c20 2.3415 1.43 2.420643 0.980208 0.830832 
c3 2.3415 2.79 2.770501 0.000429 0.201152 
c5 2.3415 2.78 2.906992 0.015927 0.192282 
c7 2.3415 3.70 3.406476 0.087084 1.845522 
c9 2.3415 2.60 2.579857 0.00043 0.066822 
    ∑ = 1.612151 ∑ = 6.805758 

 
Since Pred-r2 =1 - ∑[Ypred(te) – Y(te)]2 / ∑[Yte – Ym(tr)]2 
Pred-r2 = 1-(1.612151/6.805758) = 0.7631 
 
4.4.5 Model-2: MLR Derived Model for pLD50 of Anti-Candidal Complexes. 
pMIC = 1.579 + 0.5858 nBase - 0.02752 WA.polar - 0.006247 WV.polar + 0.02801 WV.mass 
 n = 20, R2 = 0.946, R2adj = 0.932, RMSE = 0.1536, P < 0.0001 at 95% Confidence Level. 

 
Table 7: Effect of terms in model – 2 at 95% confidence level 

 
Term  SS DF MS F p-value 
nBase 1.681 1 1.681 71.26 <0.0001 
WA.polar 0.981 1 0.981 41.60 <0.0001 
WV.polar 0.225 1 0.225 9.53 0.0075 
WV.mass 3.005 1 3.005 127.33 <0.0001 
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The result of the GFA QSAR model is in conformity with the standard shown in Table 2 as R2 = 0.9464, R2adj = 
0.9321, Q2 = 0.9010, R2pred. = 0.7631. This confirms the robustness of the model. 
 
The comparison of observed and predicted antibacterial activities of the complexes is presented in Table 5. The 
predictability of model-1 is evidenced by the low residual values observed in Table 5. Also, the plot of predicted 
LD50 against observed LD50 shown in Fig.1 confirms the robustness of the model. Further, the plot of observed 
pLD50 versus residual pLD50 (Fig.2) indicated that there was no systemic error in model development as the 
propagation of residuals was observed on both sides of zero [8]. 
 
The P-value of the model at 95% confidence level shown in model-2 is < 0.0001. This reveals that the alternative 
hypothesis that there is an association between the descriptors used in the model and the LD50 of the molecules takes 
preference over the null hypothesis. 
 
The effect of terms shown in section Table 7 reveals that at 95% confidence level, all the descriptors in the model 
contribute significantly as their P-values are less than 0.05, a requirement at this confidence limit. 
 
The closeness of the values of R2, R2

adj, Q
2 of model obtained from GFA to that obtained through MLR, further 

reveals the reliability and robustness of the GFA model.  
 
QSAR derivation indicated that the toxicity of Schiff bases and their Ni (II) complexes is strongly correlated with 
number of basic group (nBase), non-directional WHIM weighted by atomic polarizabilities (WV polar and 
WA.polar), and non-directional WHIM weighted by atomic masses (WV. mass). This suggests that the toxicity of 
this class of compounds depended on their hydrophilicity, polarity as well as their molecular sizes.  
 
However, the toxicity of a molecule varies inversely with its LD50, thus the higher the LD50, the lower the toxicity 
and vice versa. 
 
The decrease in toxicity with increase in the number of basic groups as shown in the models may be rationalized 
thus; as the number of basic group increases in a molecule, the molecule become more hydrophilic enough to 
dissolve in aqueous gastric juice and blood stream [35] 
 
The decrease in toxicity with increase in the number of basic group might be as a result of the increasing solubility 
of the molecule which consequently leads to increase in volume of distribution of the molecule in the biological 
system. 
 
WV.polar and WA.polar are WHIM descriptors which describe the polarity of a molecule. The decrease in toxicity 
with decrease in polarity of the molecule as shown in the models may be due to the increase in lipophilicity of the 
molecules due to reduced polarity, enhancing its penetration into the lipophilic biological membranes. 
 
Also, WV.mass is non-directional WHIM descriptor which describes the size of the molecule, The decrease in 
toxicity with increasing size of the molecules may be due to the possibility of  the molecule to be largely confined to 
the plasma compartment because of their large size [36] affecting its distribution via out the body. 

 
CONCLUSION 

 
The generated QSAR models, performed to explore the structural requirements controlling the observed toxicity 
(LD50) of Schiff bases and their nickel (II) complexes, hinted that the toxicity of the molecules were affected by 
directional WHIM descriptors weighted by atomic polarizability and the number of basic group. The robustness and 
applicability of QSAR equation has been established by internal and external validation techniques. It is envisaged 
that the wealth of information in this QSAR model and its predictive power will provide an insight to designing less 
toxic novel bioactive anti-Candida albicans molecules. 
 
5.0 Recommendation  
In the future design of novel less toxic Schiff bases and their Ni (II) complexes as anti-Candida albicans drug, it is 
recommended based on this research that the molecules should be made less polar as possible. Also, the molecules 
should be made slightly hydrophilic by incorporating basic functional groups into the parent moeities. The size of 
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the molecule should be made optimal by substituting bulkier ligands in the parent moieties with a less bulky ligand 
or functional groups. 
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