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ABSTRACT  
 
Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and 
are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for 
understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 
45 halogenated phenols to Tetrahymena Pyriformis were estimated using no cost semi-empirical AM1, PM3, and 
PM6 quantum chemistry methods. QSTR models were established using the multiple linear regression technique and 
the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the 
external validation. Their structural chemical domain has been defined by the leverage approach. The results show 
that that the best QSTR model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set 
and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are 
checked. The obtained QSTR models were developed with a few number of meaningful descriptors and put in 
evidence the importance of the transport factor expressed by the hydrophobicity parameter and the electronic effect 
expressed by the Parr’s electrophilicity index in the interpretation and the prediction of the toxicity of halogenated 
phenols. 
 
Keywords: Halogenated phenols; Toxicity; Electrophilicity index; Hydrophobicity index, Quantitative Structure-
Toxicity Relationships;  Semi-empirical methods. 
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INTRODUCTION 
 

A variety of organic compounds can be environmental pollutants and toxicants. Therfore, it is vital to protect the 
environment and prevent occupational poisoning by studying the toxicity of these pollutants. The impact of the 
potential hazard of unstead chemicals, a challenge confroting international regulatory agencies [1-4], can be 
measured by experimental investigations,but this approach is both quite expensive and time-consuming [5]. Because 
of this a great deal of effort has been put  into the use of  theoretical and computational methods to make up for the 
disadvantages of the experiment. An alternative is to rely on QSTR (Quantitative Structure-Toxicity Relationship) 
models that describe a mathematical relationship between the structural feature of a set of chemicals and the 
particular toxicity assoociated with  them [6,7].  
 
Phenols represent a substantial part of the chemicals produced worldwide. They have been widely used as basic 
materials in medicine, industry and agriculture [8]. They can  speared through air and water, with strong 
carcinogenecity and mutagenicity [9-10], which causes great damage to environment. The environmental hazards of 
phenolic compound have led to wide concern by researchers, and many works have been done for their QSTR 
models in recent years [11-15]. Cronin et al. [14] obtained QSTR models for a series of phenols using multiple 
linear regression  (MLR) and neural netwok (NN) methods and their obtained results show the  ability of the 
elaborated models to predict the two non-covalent mechanisms(polar narcosis and respiratory uncoupling) and their 
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inability to estimate the toxicity of the electrophilic mechanism. Pasha et al. [16] studied the toxicity of a series of 
phenol derivatives using semi-empirical and DFT methods. However, the elaborated QSTR models involve several 
correlated molecular descriptors and the calculated values of the electrophilicity (see Tables 2-5 of Ref. 16) are 
erroneous and senseless. Recently, Ertürk et al. [17]studied the toxicity of a series of phenols to marine alga 
Dunaliellatertiolecta using the consensus MLR and NN approaches. Their QSTR models, elaborated on the basis of 
molecular descriptors calculated using CODESSA [18] and DRAGON [19] softwares, provided acceptable 
predictions although the physical meaning of the involved descriptors and their correlation with toxicity are not 
always clear and rationally explained. Ertürk et al.[20] also modelled the toxicity of a series of phenols to Chlorella 
vulgaris using the MLR approach and their results revealed that the established QSTR models provide acceptable 
predictions (R² < 0.84, SD <0.20) for polar narcotics and respiratory uncouplers, but they lack to predict the toxicity 
of reactive phenols exhibiting an electrophilic mechanism. 
 
Halogenated phenols and specially chlorophenols are the most widespread and the largest group of phenols and 
these compounds are generally polar narcotics [21]. According to Schultz [14], it is difficult to well model the whole 
phenols in the reason of the existence of many modes of action.  It is often difficult to determine whether or not a 
chemical possesses a particular mechanism of action. For this reason QSTRs were usually developed using 
compounds of a single chemical class (e.g. halogenated phenols) on the assumption that such a congeneric series has 
a common mechanism of action.  
 
Several theoretical studies on the prediction of the toxicity of halogenated phenols can be found in the literature [22-
24]. However, several elaborated QSTR models do not fully meet the OECD (Organisation for Economic Co-
operation and Development) principles for QSAR validation [25]. For instance, the external validation is not 
systematically carried out or the model descriptors are highly correlated making it hard to know the external 
predictive power. Furthermore, the Y-randomization and the applicability domain of the model are not constantly 
evaluated and discussed. On the other hand, the halogenated phenols are generally polar narcosis, so it exists a flow 
of electron between the molecule toxic and the organism. This electronic effect has been expressed in QSTR 
modelling  by different descriptors such as the energy of the highest occupied molecular orbital EHOMO [24], the 
lowest unoccupied molecular orbital ELUMO [14,26], and the super-electrophilic-delocalizability Amax [26-28]. Since 
EHOMO expresses the trend of system to furnish electrons, i.e. the nucleophilic character, this descriptor cannot be 
used to express the electrophilicity behaviour.  On the other hand, ELUMO and Amax are only approximate definitions 
of the electrophilicity concept. Thereby, these quantities are not suitable quantum chemical parameters to express 
the electrophilicity power. Recently, Parr et al. [29] proposed a precise and rigorous definition of the electrophilicity 
power, denoted ω, based on the energy lowering associated with a maximum amount of electron flow between two 
species. The Parr’s electrophilicity index is of great interest in analysing several and diverse areas of chemistry. 
Indeed, it has been shown that the electrophilicity possesses adequate information regarding structure, stability, 
reactivity, toxicity, bonding, interactions and dynamics [30]. The ω descriptor has been used for the study of the 
toxicity of chlorinated phenols by Chattaraj et al. [31]. However, it has been used alone and the penetration factor, 
namely the lipophilicity parameter log P, has not been taken into account. In the present work, both the electronic 
and transport factors would be considered. Two objectives were targeted for the present study: i) To elaborate 
predictive models for the toxicity of a series of  halogenated phenols via Tetrahymena Pyriformis using a few 
number of descriptors that explain both the measured toxicity and the mode of action of these compounds. The most 
important advantage of the present contribution is the use of no consuming computational semi empirical methods to 
establish reliable and satisfactory QSTR models involving a few and meanigful molecular descriptors.  ii) To 
evaluate the influence of semiempirical methods (AM1, PM3 and PM6) on the quality of the elaborated QSTR 
models for halogenated phenols. 
 

MATERIALS AND METHODS 
 

2.1. Dataset and biological data 
The database consists of 45 halogenated and alkyl halogenated phenols taken from the reference [11] and listed in 
Table 1. Their biological data are considered to be of high quality since they refer to the same endpoint measured 
under the same experimental conditions.Toxicities  were converted into the corresponding –logIGC50 values 
(pIGC50), where IGC50 here means the millimolar concentration causing 50% inhibition of growth about halogenated 
phenols to Tetrahymena Pyriformis. 
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Table 1 Chemical abstracts service (CAS) number, chemical name, values of descriptors, observed and predicted toxicity and residuals 
 

Compound AM1 PM3 PM6 

 
CAS. N  Exp.Tox     logP ω Pred.Tox Resid ω Pred.Tox Resid ω 

 
Pred.Tox Resid 

4-fluorophenol 
 

371-41-5 0.017 
 

1.915 
 

1.114 
 

0.222 -0.205 1.165 
 

0.269 -0.252 1.274 
 

0.325 -0.308 

2-chlorophenol 
 

95-57-8 0.183 
 

2.155 
 

1.124 
 

0.375 -0.192 1.119 
 

0.350 -0.167 1.233 
 

0.396 -0.213 

2-bromophenol 
 

95-56-7 0.33 
 

2.355 
 

1.160 
 

0.549 -0.219 1.155 
 

0.526 -0.196 1.261 
 

0.549 -0.219 

3-fluorophenol 
 

372-20-3 0.381 
 

1.915 
 

1.162 
 

0.301 0.080 1.205 
 

0.327 0.054 1.245 
 

0.280 0.101 

2-chloro-5-
methylphenol 
 

615-74-7 0.393 
 

2.654 
 

1.113 
 

0.640 -0.247 1.106 
 

0.640 -0.247 1.153 
 

0.549 -0.156 

4-chlorophenol 
 

106-48-9 0.545 
 

2.485 
 

1.105 
 

0.532 0.013 1.107 
 

0.537 0.008 1.255 
 

0.612 -0.067 

2-bromo-4-
methylphenol 
 

6627-55-0 0.599 
 

2.854 
 

1.141 
 

0.800 -0.201 1.266 
 

0.999 -0.400 1.223 
 

0.768 -0.169 

2,4-difluorophenol 
 

367-27-1 0.604 
 

1.947 
 

1.286 
 

0.524 0.080 1.346 
 

0.553 0.051 1.419 
 

0.565 0.039 

2-chloro-4,5-
dimethylphenol 
 

1124-04-5 0.688 
 

3.103 
 

1.102 
 

0.878 -0.190 1.116 
 

0.933 -0.245 1.132 
 

0.766 -0.078 

4-chloro-2-
methylphenol 
 

1570-64-5 0.701 
 

2.984 
 

1.098 
 

0.804 -0.103 1.103 
 

0.840 -0.139 1.191 
 

0.790 -0.089 

2,6-dichlorophenol 
 

87-65-0 0.735 
 

2.627 
 

1.272 
 

0.889 -0.154 1.245 
 

0.827 -0.092 1.412 
 

0.932 -0.197 

2,6-dichloro-4-
fluorophenol 
 

392-71-2 0.804 
 

2.797 
 

1.404 
 

1.205 -0.401 1.394 
 

1.150 -0.346 1.604 
 

1.322 -0.518 

3-chlorophenol 
 

108-43-0 0.871 
 

2.485 
 

1.159 
 

0.622 0.249 1.167 
 

0.626 0.245 1.293 
 

0.671 0.200 

2,4-dichlorophenol 
 

120-83-2 1.036 
 

2.957 
 

1.254 
 

1.047 -0.011 1.231 
 

1.010 0.026 1.426 
 

1.138 -0.102 

2,5-dichlorophenol 
 

583-78-8 1.125 
 

2.957 
 

1.275 
 

1.083 0.042 1.231 
 

1.012 0.113 1.418 
 

1.125 0.000 

3-chloro-4-
fluorophenol 
 

2613-23-2 1.131 
 

2.717 
 

1.272 
 

0.942 0.189 1.294 
 

0.955 0.176 1.444 
 

1.032 0.099 

2,4,6-trichlorophenol 
 

88-06-2 1.41 
 

3.367 
 

1.376 
 

1.398 0.012 1.317 
 

1.391 0.019 1.573 
 

1.592 -0.182 

4-bromo-2,6-
dimethylphenol 
 

2374-05-2 1.167 
 

3.633 
 

1.093 
 

1.165 0.002 1.138 
 

1.294 -0.127 1.143 
 

1.077 0.090 

2,3,5,6-
tetrafluorophenol 
 

769-39-1 1.167 
 

2.068 
 

1.547 
 

1.219 -0.052 1.716 
 

1.168 -0.001 1.687 
 

1.045 0.122 

4-chloro-3,5-
dimethylphenol 
 

88-04-0 1.201 
 

3.483 
 

1.139 
 

1.156 0.045 1.078 
 

1.113 0.088 1.087 
 

0.908 0.293 

2,3-dichlorophenol 
 

576-24-9 1.276 
 

2.837 
 

1.270 
 

1.006 0.270 1.228 
 

0.933 0.343 1.402 
 

1.034 0.242 

4-bromo-6-chloro-2-
methylphenol 
 

7530-27-0 1.276 
 

3.606 
 

1.241 
 

1.397 -0.121 1.261 
 

1.457 -0.181 1.375 
 

1.419 -0.143 

2,4-dibromophenol 
 

615-58-7 1.398 
 

3.307 
 

1.307 
 

1.336 0.062 1.425 
 

1.511 -0.113 1.444 
 

1.359 0.039 

Pentafluorophenol 
 

771-61-9 1.638 
 

2.213 
 

1.825 
 

1.572 0.066 1.882 
 

1.499 0.139 1.836 
 

1.356 0.282 

3,4-dichlorophenol 
 

95-77-2 1.745 
 

3.167 
 

1.251 
 

1.162 0.583 1.215 
 

1.118 0.627 1.407 
 

1.224 0.521 

4-bromo-2,6-
dichlorophenol 
 

3217-15-0 1.778 
 

3.517 
 

1.388 
 

1.589 0.189 1.365 
 

1.554 0.224 1.577 
 

1.681 0.097 

2,4,6-tribromophenol 
 

118-79-6 2.03 
 

3.917 
 

1.442 
 

1.907 0.123 1.530 
 

2.042 -0.012 1.600 
 

1.938 0.092 

Pentachlorophenol 
 

87-86-5 2.049 
 

4.323 
 

1.618 
 

2.431 -0.382 1.475 
 

2.214 -0.165 1.806 
 

2.481 -0.432 

2,4,5-trichlorophenol 
 

95-95-4 2.097 
 

3.577 
 

1.399 
 

1.641 0.456 1.333 
 

1.544 0.553 1.572 
 

1.706 0.391 

2,3,5-trichlorophenol 
 

933-78-8 2.373 
 

3.577 
 

1.410 
 

1.661 0.712 1.328 
 

1.537 0.836 1.572 
 

1.707 0.666 

3,4,5,6-tetrabromo-2-
methylphenol 
 

576-55-6 2.574 
 

4.967 
 

1.563 
 

2.706 -0.132 1.613 
 

2.814 -0.240 1.683 
 

2.649 -0.075 

Pentabromophenol 
 

608-71-9 2.664 
 

4.853 
 

1.741 
 

2.937 -0.273 1.710 
 

2.886 -0.222 1.889 
 

2.903 -0.239 

3-iodophenol 626-02-8 1.119 2.895 1.196 
 

0.885 -0.382 1.308 
 

1.037 -0.165 1.586 
 

1.280 -0.432 

4-iodophenol 540-38-5 0.854 2.895 1.146 
 

0.803 0.456 1.286 
 

0.975 0.553 1.499 
 

1.153 0.391 
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Test set              
2-fluorophenol 367-12-4 0.185 1.715 1.132 0.139 0.046 1.190 0.176 0.009 1.232 0.150 0.035 
2,6-difluorophenol 28177-48-

2 
0.471 1.747 1.308 0.450 0.021 1.360 0.456 0.015 1.372 0.378 0.093 

4-bromophenol 106-41-2 0.680 2.630 1.141 0.676 0.004 1.174 0.687 -0.007 1.266 0.691 -0.011 
4-chloro-3-
methylphenol 

59-50-7 0.796 2.984 1.097 0.805 -0.009 1.098 0.777 0.019 1.164 0.727 0.069 

4-chloro-3-
ethylphenol 

14143-32-
9 

1.081 3.513 1.094 1.102 -0.021 1.101 1.090 -0.009 1.171 1.021 0.060 

3-bromophenol 591-20-8 1.145 2.635 1.198 0.774 0.371 1.206 0.738 0.407 1.321 0.777 0.368 
4-bromo-3,5-
dimethylphenol 

7463-51-6 1.268 3.633 1.092 1.166 0.102 1.144 1.227 0.041 1.102 0.981 0.287 

3,5-dichlorophenol 591-35-5 1.569 3.287 1.303 1.320 0.249 1.283 1.239 0.33 1.483 1.371 0.198 
4-chloro--2-
isopropyl-5-
methylphenol 

89-68-9 1.854 4.411 1.064 1.565 0.289 1.077 1.580 0.274 1.113 1.415 0.439 

2,3,5,6-
tetrachlorophenol 

935-95-5 2.222 3.848 1.547 2.046 0.176 1.432 1.796 0.426 1.718 2.027 0.195 

2,3,4,5-
tetrachlorophenol 

4901-51-3 2.712 4.058 1.484 2.060 0.652 1.371 1.825 0.887 1.664 2.058 0.654 

 
2.2. Geometry optimization and molecular descriptors  
The structures were drawn using chem-office package [32]. First, we carried out a preliminary molecular mechanics 
geometry optimization calculations for each compound of this study, and then AM1 [33], PM3[34], and PM6 [35] 
semi-empirical methods included in Gaussian 09 software [36] are used for the final geometry optimization. A large 
number of descriptors were calculated for each compound, representing structural, steric, electronic and electrostatic 
properties that may be related to the toxicity of halogenated phenols to Tetrahymena  pyriformis. Logarithms of the 
octanol/water partition coefficient (log P) and other descriptors (for instance, polarzability, total positive charge, 
total absolute charge, surface area, total charge of halogenated atoms, total charge of carbons of  the aromatic 
ring,…)  were calculated using different software the ACD/Labs [37], Hyperchem[38] andMolinspiration [39] 
softwares. The log P values, were also taken from reference 11.  
 
According to previous works [26-28, 24], the toxicity can be explained in terms of the electrophilicity power which 
has been expressed by Amax, the ELUMO or the EHOMO. Unfortunately, in our opinion all these definitions are not 
precise.  However, recent studies show that the electrophilicity concept is more suitably defined within the 
conceptual density functional theory (CDFT). According to CDFT, the chemical potential and chemical hardness for 
the n-electron molecular system with total energy E and external potential are defined as the first and second 
derivatives of the energy with respect to n, respectively.  
 

2

)( HOMOLUMO EE +=µ
                                                                                                              

(1) 

HOMOLUMO EE −=η
                                                                                                                                                            

(2) 

 
Where ELUMO is the lowest unoccupied molecular orbital’s energy and EHOMO is the highest occupied orbital’s 
energy. 
Using µ and η, Parr et al.[29] have defined  the electrophilicity index, ω, which measures the propensity to absorb 
electrons and is defined as: 

η
µω
2

2

=                                                                                                                                     (3) 

 
2.3. Statistical analysis 
The multiple linear regression (MLR) was used to develop the QSAR models using the MINITAB (version15) 
software [40]. Testing the stability, predictive power and generalization ability of the models is a very important step 
in QSAR study. For the validation of predictive power of a QSAR model, two basic principles (internal and external 
validations) are mandatory. 
 
2.4. Selection and validation of the best statistical model for predicting pIGC50 
2.4.1. Cross-validation test.  
Internal cross-validation is a popular method used to explore the reliability of statistical models. Based on this 
technique, a number of modified data sets are created by deleting in each case one molecule (leave-one-out) or many 
molecules (leave-many-out). For each data set, a model is developed, based on the utilized modeling technique. The 
model was evaluated by measuring its accuracy in predicting the responses of the remaining data. In the present 
study, the internal predictive capability of the model was evaluated by leave-one-out cross-validation (R2

cv). A good 
R2

cvindicates a good robustness and high internal predictive power of a QSAR model. However, recent studies of 
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Tropsha and co-workers [41],  Gramatica et al.[42] indicate that there is no evident correlation between the value of 
R2

cv and actual predictive power of a QSAR model, revealing that the R2cvis still insufficient for a reliable estimate 
of model’s predictive power for all new chemicals.  
 
2.4.2. Y-Randomization test 

Y-randomization (randomization of response) is a widely used approach to establish model robustness. It consists of 
rebuilding the models using randomized activities (for instance, toxicity) of the training set and subsequent 
assessment of the model statistics. It is expected that models obtained from the training set with randomized 
activities should have significantly lower values of R2

cv for the training set than the models built using training set 
with real activitiesor at least these models should not have satisfied some of the validation criteria defined in Eqs. 4-
7 given below.If this condition is not satisfied, real models built for this training set are not reliable and should be 
discarded [43]. 
 
2.4. 3. Validation through the external validation  
External validation is now a “must have” tool for evaluating the reliability of QSAR models [44]. In this procedure, 
typically the overall set is randomly divided into a training set and a test set. QSAR models were developed based 
on the training set and then were used to make predictions for the test set. In the present study, the toxicity data was 
sorted in ascending order, extracting one sample every three samples as test set, with training set retained.  
 
According to Golbraikh andTropsha [45], a QSAR model has an acceptable predictive power if the following 
conditions were satisfied: 
 
R2> 0.7                                                                                                                                     (4) 
 
R2 

cv> 0.6                                                                                                                                 (5) 

2

2
0

2

R

RR −
< 0.1   and 0.85 ≤ k ≤ 1.15                                                                                       (6a) 

or 

2

2
0

'2

R

RR −
< 0.1   and 0.85 ≤ k’ ≤ 1.15                                                                                      (6b) 

and 

3.02
0

2 ≤− RR (7) 

 
Where R2 is the squared correlation coefficient between observed and predicted values for the test set; R2

0 and k are 
the correlation coefficient and slopes of the linear regression between the observed and predicted values when 
intercept was set to zero. The predicted versus observed and observed versus predicted correlation coefficients and 
slopes are different and therefore the latter were designated as R’2

0 and k’, respectively. 
 
2.5. Model applicability domain 
In order to use a QSAR model for screening new compounds, its domain of application must be defined and 
predictions for only those compounds that fall into this domain may be considered reliable [46,47]. In this study, the 
leverage approach was used to visualize the applicability domain (AD) of the QSARs. Compounds with 
standardized residuals greater than 2.21 were identified as response outliers. The limit of structural outliers was 
determined by their critical hat values (h*) calculated by 3p/n, where p is the number of model variables plus one, 
and n is the number of compounds in the model. In this approach, the hat value of a particular compound was used 
as a measure to quantify the compound’s distance from the structural space of a model and h>h* indicate that the 
compound in question is outside of the model’s structural AD; thus, the prediction could be unreliable [42]. 
 

RESULTS AND DISCUSSION 
 

The whole data set constituted by 45 halogenated phenols was divided into a training set formed by 34 compounds 
and test series formed by 11 compounds randomly chosen. Using the ‘best subsets’ method implemented in 
MINITAB, we built several models for both AM1, PM3, and PM6 semi-empirical methods. Next, we verify the 
non-collinearity of the descriptors appearing in each equation. If the descriptors in the MLR equation are highly 
correlated, the QSTR model is systematically rejected.  
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Since phenols in general and halogenated phenols specifically acting as polar narcosis [11-14], we have tested firstly 
the correlation between the measured toxicity and the octanol-water coefficient log P,which reflects the penetration 
of the toxicant into membrane lipids. The log P parameter has been calculated using several softwares.  However, 
the values taken from the reference [11] are found to give the best simple linear regression (R2 = 0.68, SD = 0.4). 
This result shows that the toxicity of this set of halogenated phenols can be partially explained solely by the log P 
descriptor. However, to improve the quality of the QSAR models, the inclusion of other descriptors is necessary. 
According to many studies of the literature, the majority of halogenated phenol act as polar-narcotics [11,13]. For 
this reason, the Parr’s electrophilicity index, ω, has been calculated and used as a potential quantum chemistry 
descriptor. The two-parameter MLR models obtained using AM1, PM3, and PM6 semi-empirical methods are given 
in Eqs.(8-10); where n is the number of compounds included in the model, SD is the standard deviation of the 
regression, R2 is the squared correlation coefficient, F is the Fischer ratio, R2cv is the square of the cross-validated 
correlation coefficient and P is the P-value. 
 
AM1 method  
pIGC50 = - 2.69 + 1.65 ω+ 0.57 log P                                                                                     (8) 
n= 34,      R2 = 0.87,   R2adj = 0.86,   R2cv= 0.84,    SD = 0.26,     F= 100.43,    P=0.000 
 
PM3 method 
pIGC50= - 2.63 + 1.47ω+ 0.62 log P                                                                                        (9) 
n= 34,      R2= 0.84, R2

adj= 0.83,   R2
cv= 0.81,       SD = 0.28,   F= 80.05,        P =0.000 

 
PM6 method 
pIGC50= - 2.67 + 1.50 ω+ 0.57 log P                                                                                     (10) 
n= 34,      R2 = 0.85, R2

adj= 0.84,   R2
cv= 0.82,    SD = 0.27,    F= 90.20,        P= 0.000 

 
It turns out that a considerable improvement of the QSAR models is achieved by combining the log P parameter 
with the ω index. The three semi-empirical methods (AM1, PM3, PM6) gave satisfactory MLR models although the 
AM1 method seems to give the best statistical parameters. In Table 2, were reported the coefficient (Coef.), standard 
error of coefficients (SE Coef.), T-test, variance inflation factor (VIF) and the correlation coefficient (Rcor).             
The analysis of VIF values and Rcor shows that there is no correlation (collinearity) between the two descriptorsω 
and log P. 
 

Table 2 Correlation coefficients and VIF values among the variables. 
 

Predictor Coef. SE Coef. T-test VIF Rcor 
Constant -2.69 0.31 -8.73   
ω  1.65 0.25     6.57 1.19 0.39 
log P  0.57 0.06    8.91   1.19 0.39 

 
The analysis of the predicted and the standardized residuals shows the existence of two outliers in the training set 
with standardized residual greater than 2.2 units of toxicity for the three models given in Eqs.(8-10). These outlier 
compounds are 2, 3, 5-trichlorophenol number (no. 25) and 3,4-dichlorophenol number (no. 30). For which the 
predicted toxicity are considerably less than the measured toxicity. After the elimination of these two outliers from 
the training set, the quality of the MLR models, given in Esq.(11-13) is remarkably improved. 
 
AM1 method 
pIGC50= - 2.64 + 1.64 ω+ 0.54 log P                                                                                     (11) 
n= 30,     R2 = 0.91,  R2

adj = 0.91,     R2cv = 0.90,   SD = 0.20,   F=151.22,   P=0.000 
 
PM3 method 
pIGC50= - 2.67+ 1.55 ω+ 0.58 log P                                                                                      (12) 
n= 30,     R² = 0.90,      R2adj = 0.89,     R2cv = 0.89,   SD = 0.21,   F=132.92,   P=0.000 
 
PM6 method 
pIGC50= - 2.60 + 1.46 ω+ 0.54 log P                                                                                     (13) 
n= 30,      R2 = 0.89,  R2

adj = 0.89,      R2cv = 0.86,   SD = 0.22,   F=121.20, P=0.000 
 
Internal cross-validation 
The internal stability of the established models to the inclusion/exclusion of compounds is measured by the 
correlation coefficient and standard deviation of the cross-validation. The statistics of leave one out cross-validation 
might be considered as a good measurement of the predictability of the models. The high values of the regression 
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coefficients R2
cv of leave-one-out cross-validation and the small values of standard deviations SDs (see Eqs. 11-13) 

proved the predictive power and the internal stability of the elaborated models.  
 
Y-randomization  
The QSAR models must be subjected to Y-randomization to ensure that the developed relationships are not ‘chance’ 
correlations. In this technique, only the dependent variable Y is randomly re-ordered while the independent variables 
are left untouched and a new fit (R2

r) is obtained for the distorted relationship. In the present study, this procedure 
was repeated many times for each proposed QSAR and the mean R2r was reported for each model. In this so-called, 
model randomization, the resulting models were expected to have very lower squared correlation coefficient (R2

r) 
compared to the original relationship (R2) since the link between the structure and toxicity is served [25]. The results 
of the randomisation for the ten first iterations are presented in Table 3. It was found that all values of R2

r of the 
randomized models are lower than the corresponding R2 of the non-randomized (i.e. original) model. This finding 
indicated that the obtained relationships are not due to ‘chance’.  
 

Table3 Rr
2 and R2

cv values after several Y-randomizations 
 

Iteration Rr
2(Eq.11) R2

cv(Eq.11) Rr
2(Eq.12) R2

cv(Eq.12) Rr
2(Eq.13) R2

cv(Eq.13) 
1 0.040 0.000 0.031 0.000 0.020 0.000 
2 0.078 0.000 0.016 0.000 0.027 0.000 
3 0.082 0.000 0.008 0.000 0.037 0.000 
4 0.034 0.000 0.124 0.000 0.003 0.000 
5 0.138 0.000 0.041 0.000 0.200 0.077 
6 0.213 0.000 0.000 0.000 0.010 0.000 
7 0.073 0.000 0.012 0.000 0.044 0.000 
8 0.132 0.000 0.038 0.000 0.230 0.000 
9 0.079 0.000 0.005 0.000 0.006 0.000 
10 0.019 0.000 0.139 0.000 0.104 0.000 

 
External cross-validation 
It is well-known that the internal cross-validation is not sufficient to check the predictive power of a QSAR model 
and an external validation using a test series is necessary. All the MLR models given in Eqs. 8-13 were used to 
predict the toxicity for an external test set constituted  by 11 halogenated phenols randomly chosen. The analysis of 
the residuals shows that the 2,3,4,5-tetrachlorophenol is an outlier compound and it is eliminated systematically. The 
results of the external validation using the remained ten molecules of the test set are presented in Table 4. As 
mentioned in section 2.3.2, the predictive ability of a QSAR model can be verified using Tropsha’s criteria (Esq. (4-
7)). These results apparently show the good predictive ability of the MLR models only with AM1 and PM3 
methods. For the MLR model obtained with the PM6 method, the Tropsha criteria are not verified since the k value 
is less than 0.85. At the end of the rigorous validation (internal and external) process, we are convinced that the 
proposed models presented by Eqs. (8-12) are stable and predictive. Moreover, the two descriptors, namely, log P 
and ω are not correlated. 
 

Table 4 Internal and external validation of the QSARs models 
 

 Training set Test set Tropsha’ creteria 
 n R2 R2

cv SD  n R2 SD  R2
0 k �� −��

�	/�� ��� −��
�� 

AM1 
Eq.(8) 

 
34 

 
0.86 

 
0.85 

 
0.26 

  
10 

 
0.96 

 
0.11 

  
0.96 

 
0.90 

 
0.00 

 
0.00 

Eq.(11) 32 0.91 0.90 0.20  10 0.96 0.11  0.96 0.86 0.00 0.00 
PM3 
Eq.(9)  

 
34 

 
0.84 

 
0.81 

 
0.28 

  
10 

 
0.93 

 
0.14 

  
0.92 

 
0.89 

 
0.010 

 
0.01 

Eq.(12)  32 0.90 0.89 0.21  10 0.94 0.13  0.93 0.85 0.010 0.01 
PM6 
Eq.(10) 

 
34 

 
0.85 

 
0.82 

 
0.27 

  
10 

 
0.96 

 
0.12 

  
0.96 

 
0.86 

 
0.000 

 
0.00 

Eq.(13) 32 0.89 0.86 0.22  10 0.96 0.11  0.96 0.84 0.000 0.00 
 
The plots of the predicted versus experimental toxicity for both training and test sets of the models (11-13) are 
presented in figures (1a-1c)respectively. 
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Figs. (1a-1c)Predicted versus Observed Toxicity using Eqs (11-13) 
 
Figures (2a-2c) present the plot of the residuals against the experimental values for the three models # 11-13. As 
most of the calculated residuals are distributed on two sides of the zero line, we can conclude that there is no 
systematic error in the development of the present models.  

 
 

Figs. (2a-2c) Residuals versus Observed Toxicity using Eqs.(11-13) 
 

Applicability domain 
The goal of any QSAR is to develop reliable models that provide accurate predictions for as many chemical 
structures as possible in the universe, particularly for those that have not been tested or for which reliable 
experimental data is still not available. To this end, however, QSAR models must always be verified for their 
applicability with regard to chemical domain. In order to produce predicted data that can be considered reliable only 
for too structurally similar chemicals. A simple method to investigate the applicability domain for a prediction 
model is to carry out a leverage plot. The kind of leverage plots (plotting standardized residuals versus leverage of 
training compounds) for the best MLR model (Eq. 11), given in Figure 3, allows a graphical detection of both the 
outliers and the influential chemicals in a model. As observed in Figure 3, two of the data points (no. 1 and 10) 
moderately exceed critical leverage (h> h*=0.28). Both points can be kept in the model, but caution should be taken 
if similar compounds are predicted. The applicability of the model can be assessed with the descriptor ranges, 
minimum and maximum values for the modelled set of compounds, given in Table 1. Those ranges can be used 
while predicting unknown compounds. 
 

 
Fig.3 Standardized residuals versus leverages using Eq.11 

 
Discussion of the toxicity mechanism 
In the best MLR model given by Eq.(11), the main factors that could influence the toxicity are the hydrophobicity 
parameter, log P,  and the Parr’s electrophilicity index,ω,  calculated using the AM1 method. The analysis of the T-
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test values (Table 3) and the standardized coefficient of each descriptor shows that the log P descriptor has the 
higher T-test and standardized coefficient values. Consequently, thehydrophobicity factor, as expressed by log P 
with a positive coefficient, is useful to describe transport to the site of action. So, if the compound has a high log P 
value, it will have good lipid solubility, and it can diffuse easily the cell membrane and concentrate on organisms, 
leading to an increase of the toxicity of the molecule. The contribution of electronic effects as expressed by the 
Parr’s electrophilicity parameter,ω,is also important to predict the toxicity of the halogenated phenols. The positive 
coefficient of ω  indicates that the increases of the electrophilicity power of a compound leads to the increase of its 
toxicity. Therefore, we can conclude that this descriptor is more appropriate to describe the electrophilic ability of 
halogenated phenols comparing with previous descriptors (ELUMO, EHOMO or Amax). On the other hand, halogenated 
phenols exhibit a polar narcosis mechanism so there is a non-covalent interaction with the lipid component. 
Classically, polar narcotic chemicals have been modelled in the framework of response-surface approach in the form 
of the two-parameter model including both transport and electronic effects [48]. In this approach, one independent 
variable, captures uptake of the chemical into the biophase, so called penetration characteristics of molecular 
structure. Another independent variable captures interaction with the site of action, i.e. electronic effects. The simple 
QSAR models, described in this work, combine both transport and electronic factors and explain adequately the 
polar narcosis mechanism of halogenated phenols. 
 

CONCLUSION 
 

In the present study, several QSTR models for the estimation of the toxicity of 45 halogenated phenols have been 
established using the MLR method. The models are constructed by the combination of the hydrophobicity parameter 
and the Parr’s electrophilicity index calculated using both AM1, PM3, and PM6 semi-empirical methods. It turns out 
that AM1 MLR equation gives the best statistic parameters (R²= 0.91, R²CV= 0.90, SD=0.13). Moreover, the 
elaborated MLR model is found to have good stability, robustness and high predictive power when verified by both 
internal and external validation and Y-randomization. The developed QSTR model shows that the toxicity increases 
with the increase of the log P parameter which explains the penetration of the halogenated phenols into 
TetrahymenaPyriformiscells. The toxicity of the compounds is also increased by the raise of the electrophilicity 
power of the molecules which explains the importance of the charge transfer between the toxicant, acting as an 
electrophile, and the living cell behaving as nucleophile. The present study put in evidence the relevance of the 
Parr’s electrophilicity index in the rationalization of toxicity mechanism of halogenated phenols. 
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