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ABSTRACT

Phenols and especially halogenated phenols reptessnbstantial part of the chemicals produced dwitle and
are known as aquatic pollutantQuantitative structure—toxicity relationship (QSTR)odels are useful for
understanding how chemical structure relates totthécity of chemicals. In the present study, tbeta toxicities of
45 halogenated phenols to Tetrahymena Pyriformisevestimated using noostsemi-empirical AM1, PM3, and
PM6 quantum chemistry methods. QSTR models wexklisbed using the multiple linear regression tagae and
the predictive ability of the models was evalualgdthe internal cross-validation, the Y-randomiaatiand the
external validation. Their structural chemical doimd&as been defined by the leverage approach. &kelts show
that that the best QSTR model is obtained withAili@ methodR2= 0.91, R&~= 0.90, SD= 0.20 for the training set
and R2= 0.96, SD= 0.11 for the test set). Moreowdr the Tropsha’ criteria for a predictive QSTR dab are
checked. The obtained QSTR models were develoghdawiew number of meaningful descriptors and put i
evidence the importance of the transport factoresped by the hydrophobicity parameter and thetrleic effect

expressed by the Parr’s electrophilicity index lie interpretation and the prediction of the toxiaitf halogenated
phenols.

Keywords: Halogenated phenols; Toxicity; Electrophilicitydex; Hydrophobicity index, Quantitative Structure-
Toxicity Relationships; Semi-empirical methods.

INTRODUCTION

A variety of organic compounds can be environmeptdlutants and toxicants. Therfore, it is vitalgotect the
environment and prevent occupational poisoning togydng the toxicity of these pollutants. The impa¢ the
potential hazard of unstead chemicals, a challesm@&roting international regulatory agencies [1-4n be
measured by experimental investigations,but thim@gch is both quite expensive and time-consunbhggecause
of this a great deal of effort has been put ih® tse of theoretical and computational methodsake up for the
disadvantages of the experiment. An alternativi® iely on QSTR (Quantitative Structure-Toxicity l&@nship)
models that describe a mathematical relationshigvden the structural feature of a set of chemieaid the
particular toxicity assoociated with them [6,7].

Phenols represent a substantial part of the ché&sniraduced worldwide. They have been widely usedasic
materials in medicine, industry and agriculture.[8hey can speared through air and water, witbngtr
carcinogenecity and mutagenicity [9-10], which emugreat damage to environment. The environmentzrts of
phenolic compound have led to wide concern by rebeas, and many works have been done for their QST
models in recent years [11-15]. Cronin et al. [bbtained QSTR models for a series of phenols usindiple
linear regression (MLR) and neural netwok (NN) megls and their obtained results show the abilftthe
elaborated models to predict the two non-covalesthmnisms(polar narcosis and respiratory uncoupding their
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inability to estimate the toxicity of the electrafphmechanism. Pasha et al. [16] studied the fbkiof a series of
phenol derivatives using semi-empirical and DFThods. However, the elaborated QSTR models invadversl
correlated molecular descriptors and the calculatddes of the electrophilicity (see Tables 2-5Raff. 16) are
erroneous and senseless. Recently, Ertirk et @]st[idied the toxicity of a series of phenols torima alga
Dunaliellatertiolectausing the consensus MLR and NN approaches. ThelRQ8odels, elaborated on the basis of
molecular descriptors calculated using CODESSA [480 DRAGON [19] softwares, provided acceptable
predictions although the physical meaning of theoived descriptors and their correlation with tatyicare not
always clear and rationally explained. Ertirk €8] also modelled the toxicity of a series of pbks toChlorella
vulgaris using the MLR approach and their results reveahad the established QSTR models provide acceptable
predictions (R2 < 0.84, SD <0.20) for polar narcetnd respiratory uncouplers, but they lack taliptehe toxicity

of reactive phenols exhibiting an electrophilic imaaism.

Halogenated phenols and specially chlorophenolsttaremost widespread and the largest group of phearad
these compounds are generally polar narcotics fddording to Schultz [14], it is difficult to wethodel the whole
phenols in the reason of the existence of many modl@ction. It is often difficult to determine wather or not a
chemical possesses a particular mechanism of ackon this reason QSTRs were usually developedgusin
compounds of a single chemical class (e.g. haldgdrnzhenols) on the assumption that such a conigesezies has

a common mechanism of action.

Several theoretical studies on the prediction efttxicity of halogenated phenols can be foundhéliterature [22-
24]. However, several elaborated QSTR models dofult meet the OECD (Organisation for Economic Co-
operation and Development) principles for QSAR daiiion [25]. For instance, the external validatisnnot
systematically carried out or the model descriptars highly correlated making it hard to know thdeenal
predictive power. Furthermore, the Y-randomizatiom the applicability domain of the model are nmhstantly
evaluated and discussed. On the other hand, thgdrated phenols are generally polar narcosig,esasits a flow
of electron between the molecule toxic and the migya. This electronic effect has been expresse@3TR
modelling by different descriptors such as thergyef the highest occupied molecular orbitalofzo [24], the
lowest unoccupied molecular orbitalJmo [14,26], and the super-electrophilic-delocalizapil\,.x[26-28]. Since
Ehomo expresses the trend of system to furnish electiomsthe nucleophilic character, this descriptanrmot be
used to express the electrophilicity behaviour. t@nother hand, gyo and Ay.care only approximate definitions
of the electrophilicity concept. Thereby, these mitees are not suitable quantum chemical pararsdterexpress
the electrophilicity power. Recently, Parr et @] proposed a precise and rigorous definitiorhefelectrophilicity
power, denotedy, based on the energy lowering associated with amaxi amount of electron flow between two
species. The Parr's electrophilicity index is oéar interest in analysing several and diverse aséahemistry.
Indeed, it has been shown that the electrophilipibgsesses adequate information regarding strucstability,
reactivity, toxicity, bonding, interactions and @ynics [30]. Thew descriptor has been used for the study of the
toxicity of chlorinated phenols by Chattaraj et[8ll]. However, it has been used alone and thetpaion factor,
namely the lipophilicity parameter |dg has not been taken into account. In the preserk,viboth the electronic
and transport factors would be considered. Two aivjes were targeted for the present study: i) Tab@arate
predictive models for the toxicity of a series dfalogenated phenols vieetrahymena Pyriformisising a few
number of descriptors that explain both the meabktoricity and the mode of action of these compauiidhe most
important advantage of the present contributicdhésuse of no consuming computational semi empineghods to
establish reliable and satisfactory QSTR model®olinig a few and meanigful molecular descriptori) To
evaluate the influence of semiempirical methods (ANMM3 and PM6) on the quality of the elaboratedTRS
models for halogenated phenols.

MATERIALS AND METHODS

2.1.Dataset and biological data

The database consists of 45 halogenated and adkyyénated phenols taken from the reference [1d]liated in
Table 1. Their biological data are considered tmbhigh quality since they refer to the same eimupmeasured
under the same experimental conditidimxicities were converted into the correspondinggcCs, values
(pIGGCsp), where IGG, here means the millimolar concentration causirfg &thibition of growth about halogenated
phenols toaretrahymena Pyriformis.
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Table 1 Chemical abstracts service (CAS) number, emical name, values of descriptors, observed andemlicted toxicity and residuals

Compound AM1 PM3 PM6

CAS. N Exp.Tox logP Pred.Tox Resid w Pred.Tox Resid ® Pred.Tox Resid
4-fluorophenol 371-41-5 0.017 1.915 1.114 0.222 -0.205 1.165 0.269 -0.252 1.274 0.325 -0.308
2-chlorophenol 95-57-8 0.183 2.155 1.124 0.375 -0.192 1.119 0.350 -0.167 1.233 0.396 -0.213
2-bromophenol 95-56-7 0.33 2.355 1.160 0.549 -0.219 1.155 0.526 -0.196 1.261 0.549 -0.219
3-fluorophenol 372-20-3 0.381 1915 1.162 0.301 0.080 1.205 0.327 0.054 1.245 0.280 0.101
2-chloro-5- 615-74-7 0.393 2.654 1113 0.640 -0.247  1.106 0.640 -0.247  1.153 0.549 -0.156
methylphenol
4-chlorophenol 106-48-9 0.545 2.485 1.105 0.532 0.013 1.107 0.537 0.008 1.255 0.612 -0.067
2-bromo-4- 6627-55-0 0.599 2.854 1.141 0.800 -0.201 1.266 0.999 -0.400 1.223 0.768 -0.169
methylphenol
2,4-difluorophenol 367-27-1 0.604 1.947 1.286 0.524 0.080 1.346 0.553 0.051 1.419 0.565 0.039
2-chloro-4,5- 1124-04-5 0.688 3.103 1.102 0.878 -0.190 1.116 0.933 -0.245 1.132 0.766 -0.078
dimethylphenol
4-chloro-2- 1570-64-5  0.701 2.984 1.098 0.804 -0.103  1.103 0.840 -0.139  1.191 0.790 -0.089
methylphenol
2,6-dichlorophenol 87-65-0 0.735 2.627 1.272 0.889 -0.154  1.245 0.827 -0.092  1.412 0.932 -0.197
2,6-dichloro-4- 392-712 0.804 2.797 1.404 1.205 -0.401 1.394 1.150 -0.346 1.604 1.322 -0.518
fluorophenol
3-chlorophenol 108-43-0 0.871 2485 1159 0.622 0.249 1.167 0.626 0.245 1.293 0.671 0.200
2,4-dichlorophenol 120-83-2 1.036 2.957 1.254 1.047 -0.011  1.231 1.010 0.026 1.426 1.138 -0.102
2,5-dichlorophenol 583-78-8 1.125 2.957 1.275 1.083 0.042 1.231 1.012 0.113 1.418 1.125 0.000
3-chloro-4- 2613-23-2 1.131 2.717 1.272 0.942 0.189 1.294 0.955 0.176 1.444 1.032 0.099
fluorophenol
2,4,6-trichlorophenol  88-06-2 1.41 3.367 1.376 1.398 0.012 1.317 1.391 0.019 1.573 1.592 -0.182
4-bromo-2,6- 2374-05-2  1.167 3.633 1.093 1.165 0.002 1.138 1.294 -0.127  1.143 1.077 0.090
dimethylphenol
2,3,5,6- 769-39-1 1.167 2.068 1.547 1.219 -0.052 1.716 1.168 -0.001 1.687 1.045 0.122
tetrafluorophenol
4-chloro-3,5- 88-04-0 1.201 3.483 1.139 1.156 0.045 1.078 1.113 0.088 1.087 0.908 0.293
dimethylphenol
2,3-dichlorophenol 576-24-9 1.276 2.837 1.270 1.006 0.270 1.228 0.933 0.343 1.402 1.034 0.242
4-bromo-6-chloro-2-  7530-27-0  1.276 3.606  1.241 1.397 -0.121  1.261 1.457 -0.181  1.375 1.419 -0.143
methylphenol
2,4-dibromophenol 615-58-7 1.398 3.307 1.307 1.336 0.062 1.425 1.511 -0.113  1.444 1.359 0.039
Pentafluorophenol 771-61-9 1.638 2.213 1.825 1.572 0.066 1.882 1.499 0.139 1.836 1.356 0.282
3,4-dichlorophenol 95-77-2 1.745 3.167 1.251 1.162 0.583 1.215 1.118 0.627 1.407 1.224 0.521
4-bromo-2,6- 3217-15-0  1.778 3.517 1.388 1.589 0.189 1.365 1.554 0.224 1.577 1.681 0.097
dichlorophenol
2,4,6-tribromophenol  118-79-6 2.03 3.917 1.442 1.907 0.123 1.530 2.042 -0.012 1.600 1.938 0.092
Pentachlorophenol 87-86-5 2.049 4.323 1.618 2.431 -0.382 1.475 2.214 -0.165 1.806 2.481 -0.432
2,4,5-trichlorophenol  95-95-4 2.097 3.577 1.399 1.641 0.456 1.333 1.544 0.553 1.572 1.706 0.391
2,3,5-trichlorophenol  933-78-8 2.373 3.577 1.410 1.661 0.712 1.328 1.537 0.836 1.572 1.707 0.666
3,4,5,6-tetrabromo-2- 576-556 2.574 4.967 1.563 2.706 -0.132  1.613 2.814 -0.240 1.683 2.649 -0.075
methylphenol
Pentabromophenol 608-71-9 2.664 4.853 1.741 2.937 -0.273  1.710 2.886 -0.222 1.889 2.903 -0.239
3-iodophenol 626-02-8 1.119 2.895 1.1960.885 -0.382  1.308 1.037 -0.165 1.586 1.280 -0.432
4-iodophenol 540-38-5 0.854 2.895 1.1460.803 0.456 1.286 0.975 0.553 1.499 1.153 0.391
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Test set

2-fluorophenol 367-12-4 0.185 1.715 1.132 0.139 46.0 1.190 0.176 0.009 1.232 0.150 0.035

2,6-difluorophenol 28177-48- 0.471 1.747 1.308 0.450 0.021 1.360 0.456 0.015 721.30.378 0.093
2

4-bromophenol 106-41-2 0.680 2.630 1.141 0.676 £.001.174  0.687 -0.007 1.266 0.691 -0.011

4-chloro-3- 59-50-7 0.796 2.984 1.097 0.805 -0.009 1.098 0.777 0.019 1.164 0.727 0.069

methylphenol

4-chloro-3- 14143-32- 1.081 3.513 1.094 1.102 -0.021  1.101  1.090 -0.0091711  1.021 0.060

ethylphenol 9

3-bromophenol 591-20-8 1.145 2.635 1.198 0.774 10.371.206 0.738 0.407 1.321 0.777 0.368

4-bromo-3,5- 7463-51-6 1.268 3.633 1.092 1.166 0.102 1.144  1.227 0.041 1.102 0.981 0.287

dimethylphenol

3,5-dichlorophenol 591-35-5 1.569 3.287 1.303 1.320 0.249 1.283 1.239 0.33 1.483 1.371 0.198

4-chloro--2- 89-68-9 1.854 4411 1.064 1.565 0.289 1.077 1580 .2740 1.113 1.415 0.439

isopropyl-5-

methylphenol

2,3,5,6- 935-955 2.222 3.848 1.547 2.046 0.176 1.432 1.796 0.426 718L. 2.027 0.195

tetrachlorophenol

2,3,4,5- 4901-51-3 2.712 4.058 1.484  2.060 0.652 1.371 1.825 0.887 1.664 2.058 0.654

tetrachlorophenol

2.2.Geometry optimization and molecular descriptors

The structures were drawn using chem-office packdgk First, we carried out a preliminary moleagutaechanics
geometry optimization calculations for each commbohthis study, and then AM1 [33], PM3[34], and ®l85]
semi-empirical methods included in Gaussian 09so# [36] are used for the final geometry optiniaat A large
number of descriptors were calculated for each @amg, representing structural, steric, electronit @lectrostatic
properties that may be related to the toxicity alblgenated phenols fetrahymena pyriformid_ogarithms of the
octanol/water partition coefficient (log) and other descriptors (for instance, polarzapiliotal positive charge,
total absolute charge, surface area, total chafgealmgenated atoms, total charge of carbons of atomatic
ring,...) were calculated using different softwahe tACD/Labs [37], Hyperchem[38] andMolinspiratioB9]
softwares. The log P values, were also taken fefarence 11.

According to previous works [26-28, 24], the tokjctan be explained in terms of the electrophifigiower which
has been expressed by,4 the Eywo or the Eomo. Unfortunately, in our opinion all these definit® are not
precise. However, recent studies show that thetrelghilicity concept is more suitably defined viiththe
conceptual density functional theory (CDFT). Acdogito CDFT, the chemical potential and chemicatlhass for
the n-electron molecular system with total energwriel external potential are defined as the first aacond
derivatives of the energy with respect to n, reipely.

/J - (ELUMO -|2- EHOMO) (1)

1 =Eumo ~ Enomo @)

Where Eyyo is the lowest unoccupied molecular orbital's eneagnd Eiomo is the highest occupied orbital’s
energy.
Using p andh, Parr et al.[29] have defined the electrophyigitdex, w, which measures the propensity to absorb
electrons and is defined as:

2
w:,U_ (3)

2n

2.3. Statistical analysis

The multiple linear regression (MLR) was used twedep the QSAR models using the MINITAB (versionl5)
software [40]. Testing the stability, predictivewsr and generalization ability of the models issapnimportant step
in QSAR study. For the validation of predictive paveof a QSAR model, two basic principles (interaiadl external
validations) are mandatory.

2.4. Selection and validation of the best statistit model for predicting pIGC50

2.4.1. Cross-validation test

Internal cross-validation is a popular method ugeexplore the reliability of statistical modelsagd on this
technique, a number of modified data sets are etday deleting in each case one molecule (leavesatjeor many
molecules (leave-many-out). For each data set,a@ehis developed, based on the utilized modelichrigue. The
model was evaluated by measuring its accuracy édipting the responses of the remaining data. énpiresent
study, the internal predictive capability of thedebwas evaluated by leave-one-out cross-validdfBg). A good

R’.indicates a good robustness and high internal giiedi power of a QSAR model. However, recent stidie
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Tropsha and co-workers [41], Gramatica et al.jAdicate that there is no evident correlation betwthe value of
R?. and actual predictive power of a QSAR model, réngahat the R.,is still insufficient for a reliable estimate
of model’s predictive power for all new chemicals.

2.4.2. Y-Randomization test

Y-randomization (randomization of response) is delyi used approach to establish model robustnessnsists of
rebuilding the models using randomized activitiésr (instance, toxicity) of the training set and sefuent
assessment of the model statistics. It is expetitatl models obtained from the training set withd@mized
activities should have significantly lower valugsR5,, for the training set than the models built usirajring set
with real activitiesor at least these models showitdhave satisfied some of the validation criteléfined in Egs. 4-
7 given below.If this condition is not satisfieéat models built for this training set are notable and should be
discarded [43].

2.4. 3. Validation through the external validation

External validation is now @nust havétool for evaluating the reliability of QSAR modg#A]. In this procedure,
typically the overall set is randomly divided iractraining set and a test set. QSAR models wereldeed based
on the training set and then were used to makeqtiaak for the test set. In the present study ttixécity data was
sorted in ascending order, extracting one sampeyatiree samples as test set, with training seined.

According to Golbraikh andTropsha [45], a QSAR niobas an acceptable predictive power if the follogvi
conditions were satisfied:

R> 0.7 4)
R?.> 0.6 (%)
R*-R
—— <01 and0.85k<1.15 (6a)
R
or
2
R? -Ro
———<0.1 and0.85k <1.15 (6b)
R
and

‘Rz - Rg‘ <03(7)

Where R is the squared correlation coefficient betweereolsd and predicted values for the test s&t:aRd k are
the correlation coefficient and slopes of the Imeagression between the observed and predictateyalhen
intercept was set to zero. The predicted versuersbd and observed versus predicted correlatiofficeats and
slopes are different and therefore the latter wlesgnated as R'and k', respectively.

2.5. Model applicability domain

In order to use a QSAR model for screening new ammgs, its domain of application must be defined an
predictions for only those compounds that fall ititis domain may be considered reliable [46,471hia study, the
leverage approach was used to visualize the ajiityadomain (AD) of the QSARs. Compounds with
standardized residuals greater than 2.21 wereiftbehtais response outliers. The limit of structuoatliers was
determined by their critical hat values (h*) calteld by 3p/n, where p is the number of model véegaplus one,
and n is the number of compounds in the modelhisndpproach, the hat value of a particular compouas used
as a measure to quantify the compound’s distarmra the structural space of a model and h>h* indi¢hat the
compound in question is outside of the model’scétmal AD; thus, the prediction could be unrelia@g].

RESULTS AND DISCUSSION

The whole data set constituted by 45 halogenatedqih was divided into a training set formed byc8spounds
and test series formed by 11 compounds randomlpgerhoUsing the ‘best subsets’ method implemented in
MINITAB, we built several models for both AM1, PMand PM6 semi-empirical methods. Next, we verifg th
non-collinearity of the descriptors appearing icte@quation. If the descriptors in the MLR equatae highly
correlated, the QSTR model is systematically rejgct
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Since phenols in general and halogenated phenetsfigally acting as polar narcosis [11-14], we daested firstly
the correlation between the measured toxicity &edoictanol-water coefficient Idg,which reflects the penetration
of the toxicant into membrane lipids. The log Pamaeter has been calculated using several softwadiesvever,
the values taken from the reference [11] are foendive the best simple linear regressiod £F0.68, SD = 0.4).
This result shows that the toxicity of this sethedlogenated phenols can be partially explainedysble the logP
descriptor. However, to improve the quality of ®SAR models, the inclusion of other descriptoradsessary.
According to many studies of the literature, thgarty of halogenated phenol act as polar-narcdtids13]. For
this reason, the Parr’s electrophilicity index, has been calculated and used as a potential uquacttemistry
descriptor. The two-parameter MLR models obtainedgtAM1, PM3, and PM6 semi-empirical methods averm
in Egs.(8-10); where n is the number of compoumt$uded in the model, SD is the standard deviatibthe
regression, Ris the squared correlation coefficient, F is tligcRer ratio, R, is the square of the cross-validated
correlation coefficient and P is the P-value.

AM1 method

pIGCso = - 2.69 + 1.650+ 0.57 logP (8)
n=34, R=0.87, R,;=086, R,=0.84, SD=0.26, F=100.43, P=0.000
PM3 method

PIGCs= - 2.63 + 1.4%+ 0.62 logP 9)
n=34, R=0.84, R.=0.83, R,=0.81, SD=0.28 F=80.05, P =0.00
PM6 method

PIGCso= - 2.67 + 1.5Q0+ 0.57 logP (10)
n=34, R=0.85, R.=0.84, R,=0.82, SD=0.27, F=90.20, P=0.000

It turns out that a considerable improvement of @&®AR models is achieved by combining the log Rapeter
with the w index. The three semi-empirical methods (AM1, PIABI6) gave satisfactory MLR models although the
AM1 method seems to give the best statistical patars. In Table 2, were reported the coefficiertgfQ, standard
error of coefficients (SE Coef.), T-test, varianicdlation factor (VIF) and the correlation coeffirit (R)).
The analysis of VIF values and.Jshows that there is no correlation (collinearitghvieen the two descriptaos
and logP.

Table 2 Correlation coefficients and VIF values amiag the variables.

Predictor| Coef.| SE Coef. T-test VIF R
Constant| -2.69] 0.31 -8.73

W 1.65 | 0.25 6.57| 119 0.39
log P 0.57 | 0.06 8.91| 1.19| 0.39

The analysis of the predicted and the standardiesiduals shows the existence of two outliers etthining set
with standardized residual greater than 2.2 urfit®xicity for the three models given in Eqs.(8-10hese outlier
compounds are 2, 3, 5-trichlorophenol number (r%). @d 3,4-dichlorophenol number (no. 30). For \whike
predicted toxicity are considerably less than tleasured toxicity. After the elimination of theseotautliers from
the training set, the quality of the MLR models/agi in Esq.(11-13) is remarkably improved.

AM1 method

pIGCs= - 2.64 + 1.640+ 0.54 logP (11)
n=30, R=0.91, R.=0091, R,=0.90, SD=0.20, F=151.22, P=0.000
PM3 method

pIGCs= - 2.67+ 1.550+ 0.58 logP (12)
n=30, R2=0.90, °R;=0.89, R,=0.89, SD=0.21, F=132.92, P=0.000
PM6 method

pIGCs= - 2.60 + 1.4G0+ 0.54 logP (13)

n=30, R=0.89, Ruj=0.89, R,=0.86, SD=0.22, F=121.20, P=0.000

Internal cross-validation

The internal stability of the established modelsthe inclusion/exclusion of compounds is measurgdthe
correlation coefficient and standard deviationhef tross-validation. The statistics of leave oniecoass-validation
might be considered as a good measurement of duicpability of the models. The high values of thgression
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coefficients R,, of leave-one-out cross-validation and the smdlles of standard deviations SDs (see Egs. 11-13)
proved the predictive power and the internal sitghilf the elaborated models.

Y-randomization

The QSAR models must be subjected to Y-randomiagaticensure that the developed relationships ar&hance’
correlations. In this technique, only the dependaniable Y is randomly re-ordered while the indegent variables
are left untouched and a new fit}Ris obtained for the distorted relationship. e firesent study, this procedure
was repeated many times for each proposed QSARhenthean & was reported for each model. In this so-called,
model randomization, the resulting models were etqueto have very lower squared correlation coieffic (R,
compared to the original relationship?(Rince the link between the structure and toxiisityerved [25]The results

of the randomisation for the ten first iterations aresented in Table 3. It was found that all ealof R, of the
randomized models are lower than the correspon@ngf the non-randomized (i.e. original) model. Tfirgling
indicated that the obtained relationships are nettd ‘chance’.

Table3 R2 and R%, values after several Y-randomizations

lteration | RA(Eq.11)| R(Eq.11)| R(Eq.12)| R(Eq.12)| RA(Eq.13)| R.(Eq.13)
1 0.040 0.000 0.031 0.000 0.020 0.000
2 0.078 0.000 0.016 0.000 0.027 0.000
3 0.082 0.000 0.008 0.000 0.037 0.000
4 0.034 0.000 0.124 0.000 0.003 0.000
5 0.138 0.000 0.041 0.000 0.200 0.077
6 0.213 0.000 0.000 0.000 0.010 0.000
7 0.073 0.000 0.012 0.000 0.044 0.000
8 0.132 0.000 0.038 0.000 0.230 0.000
9 0.079 0.000 0.005 0.000 0.006 0.000
10 0.019 0.000 0.139 0.000 0.104 0.000

External cross-validation

It is well-known that the internal cross-validati@not sufficient to check the predictive poweraoQSAR model
and an external validation using a test seriesetessary. All the MLR models given in Eqgs. 8-13 evased to
predict the toxicity for an external test set caattd by 11 halogenated phenols randomly choBka.analysis of
the residuals shows that the 2,3,4,5-tetrachlonophie an outlier compound and it is eliminatedtsysatically. The
results of the external validation using the rerediten molecules of the test set are presentecaiteT4. As
mentioned in sectioB.3.2,the predictive ability of a QSAR model can be viedfusing Tropsha’s criteria (Esq. (4-
7)). These results apparently show the good prigdicibility of the MLR models only with AM1 and PM3
methods. For the MLR model obtained with the PM@huod, the Tropsha criteria are not verified sirfoe k value
is less than 0.85At the end of the rigorous validation (internal agxternal) process, we are convinced that the
proposed models presented by Egs. (8-12) are stalolgoredictive. Moreover, the two descriptors, elgmlog P
andw are not correlated.

Table 4 Internal and external validation of the QSARs models

Training set Test set Tropsha’ creteria

n [ RR [R% | SD n] R | SsD Ro | k | RZ—R3/R* | |R? - R}
AM1
Eg.(8) | 34| 0.86| 0.85| 0.26 10| 0.96 | 0.11 0.96 | 0.90 0.00 0.00
Eg.(11) | 32| 0.91] 0.9 0.2 10 0.96 0.1 0|96 (.86 0.00 0.00
PM3
Eg.(9) | 34| 0.84| 0.81] 0.28 10| 0.93] 0.14 0.92 | 0.89 0.010 0.01
Eg.(12) | 32 | 0.90| 0.89] 0.21 1 0.94 0.13 0.p3  0{85 0.010 01 0.
PM6
Eg.(10) | 34 | 0.85| 0.82 | 0.27 10| 0.96| 0.12 0.96 | 0.86 0.000 0.00
Eg.(13)| 32| 0.89] 0.8 0.2p 10 0.96 0.1 0{96 (.84 0.000 0.00

The plots of the predicted versus experimentalcitxifor both training and test sets of the mod@l$-13) are
presented in figures (1la-1c)respectively.
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Figs. (la-1c)Predicted versus Observed Toxicity usj Eqs (11-13)

Figures (2a-2c) present the plot of the residugksrest the experimental values for the three mo#leld-13. As
most of the calculated residuals are distributedtvem sides of the zero line, we can conclude thate is no
systematic error in the development of the presatels.

= Training set . o] | % Triningset
06| o Testset 1] o Testset ool
AM1 Method . PM3 Method

= Training set
o Testset
PM6 Method

4 . . ]
04 . .
-
-
.
-

Residuals
-

Residuals

Residuals

T T T T T T T T T T T T ! T T T T T T
00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30
Observed Toxicity Observed Toxicity ‘Observed Toxicity

Figs. (2a-2c) Residuals versus Observed Toxicitying Egs.(11-13)

Applicability domain

The goal of any QSAR is to develop reliable modélst provide accurate predictions for as many chami
structures as possible in the universe, particulfol those that have not been tested or for whielable
experimental data is still not available. To thisdehowever, QSAR models must always be verified tfeir
applicability with regard to chemical domain. Irder to produce predicted data that can be consldeti@ble only
for too structurally similar chemicals. A simple tined to investigate the applicability domain fopeediction
model is to carry out a leverage plot. The kindevkrage plots (plotting standardized residualsweteverage of
training compounds) for the best MLR model (Eq., iyen in Figure 3, allows a graphical detectidrboth the
outliers and the influential chemicals in a mod&s. observed in Figure 3, two of the data points. (h@nd 10)
moderately exceed critical leverage (h> h*=0.28)tHBpoints can be kept in the model, but cauticughbe taken
if similar compounds are predicted. The applicabibf the model can be assessed with the descripioges,
minimum and maximum values for the modelled set@hpounds, given in Table 1. Those ranges can bé us
while predicting unknown compounds.

5
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Fig.3 Standardized residuals versus leverages usifg.11

Discussion of the toxicity mechanism
In the best MLR model given by Eq.(11), the maiatdas that could influence the toxicity are the toghobicity
parameter, lo@®, and the Parr’s electrophilicity index, calculated using the AM1 method. The analysithefT-
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test values (Table 3) and the standardized coefficof each descriptor shows that the Bglescriptor has the
higher T-test and standardized coefficient val@@snsequently, thehydrophobicity factor, as exprdse log P
with a positive coefficient, is useful to descriip@nsport to the site of action. So, if the compmbhas a high lo@
value, it will have good lipid solubility, and iba diffuse easily the cell membrane and concentmaterganisms,
leading to an increase of the toxicity of the malec The contribution of electronic effects as egsed by the
Parr’s electrophilicity parametes,s also important to predict the toxicity of theldgenated phenols. The positive
coefficient ofw indicates that the increases of the electroptyilipower of a compound leads to the increasesof it
toxicity. Therefore, we can conclude that this diggor is more appropriate to describe the eledtilgpability of
halogenated phenols comparing with previous dests{E umo, Eqomo OF Amay- On the other hand, halogenated
phenols exhibit a polar narcosis mechanism so tigera non-covalent interaction with the lipid compat.
Classically, polar narcotic chemicals have beenetied in the framework of response-surface appraadhe form

of the two-parameter model including both transgord electronic effects [48]. In this approach, ardependent
variable, captures uptake of the chemical into i@phase, so called penetration characteristicenofecular
structure. Another independent variable capturessaction with the site of action, i.e. electroeftects. The simple
QSAR models, described in this work, combine boémgport and electronic factors and explain adeduahe
polar narcosis mechanism of halogenated phenols.

CONCLUSION

In the present study, several QSTR models for #tienation of the toxicity of 45 halogenated phenwdse been
established using the MLR method. The models amstoacted by the combination of the hydrophobipiéyameter
and the Parr’s electrophilicity index calculatethgsboth AM1, PM3, and PM6 semi-empirical methdtisurns out
that AM1 MLR equation gives the best statistic paeters (R2= 0.91, Rg= 0.90, SD=0.13). Moreover, the
elaborated MLR model is found to have good stahitibbustness and high predictive power when \estifiy both
internal and external validation and Y-randomizatibhe developed QSTR model shows that the toxinityeases
with the increase of the lo@ parameter which explains the penetration of theodeated phenols into
TetrahymenaPyriforméells. The toxicity of the compounds is also insexh by the raise of the electrophilicity
power of the molecules which explains the imporéan€ the charge transfer between the toxicantpgcis an
electrophile, and the living cell behaving as naplele. The present study put in evidence the ealeg of the
Parr’s electrophilicity index in the rationalizatiof toxicity mechanism of halogenated phenols.
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