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ABSTRACT 
 
The spatial string tension has a widespread influence upon various distinctive features of 
Quantum-Chromodynamics (QCD). These include the behavioural implications of spatial string 
tension correponding to varying temperatures under different QCD phases. An  exclusive study 
has been performed for visualising this variation both above and below the critical 
deconfinement temperatures Tc. Furthermore, we have pinpointed the observational difference 
between the QCD approach corresponding to Nc=1 and Nc=3 limits. Also, we have tried to study 
the effective spatial string tension in quenched SU(Nc) QCD under the gluon chain model when 
temperatures are considered below Tc. The spatial string tension is also visualized within a five 
dimensional AdS/QCD framework. We observed that the temperature dependence of string 
tension is very soft below Tc and sharp above Tc.  
 
PACS numbers: 12.38.-t, 11.25.Wx, 12.38.Gc, 12.38.Aw 
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INTRODUCTION 

 
A broad spectrum of research areas such as Cosmology, Astrophysics and Heavy-Ion-
Phenomenology are implicitly dependent upon the calculation of QCD thermodynamics from the 
first principle. Recently, lattice QCD [1] has proven to be the richest source to perform such 
calculations and the interest in QCD at temperatures larger than a few hundred MeV witnesses 
effective triggering for both experimental as well as pure theoretical reasons. We have studied 
the thermodynamics of QCD, both below and above the deconfinement temperature.  
 
The heavy ion collisions aim at creating quark-gluon plasma in the laboratory and recent RHIC 
experiments [2,3] suggest that the quark-gluon plasma may be more than a perfect liquid and 
spatial string tensions prevail in this high temperature regime. Basically, the spatial string tension 
verifies the theoretical concept of  dimensional reduction at high temperatures [4] and serves as a 
classic non-perturbative probe for the convergence of the weak coupling expansion in this high 
temperature domain. Thus, we can say that the study of QCD at temperatures larger than (a few) 
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hundred MeV helps in probing the property of asymptotic freedom. The spatial string tension 
thereby projects out as a classic non-perturbative probe for the convergence of weak coupling 
expansion at high temperatures. However, we are well aware of the fact that at the confinement 
temperature Tc, the physical string tension becomes zero. Using a simple argument on the 
behaviour of horizontal Wilson loops at high temperature, a general relation between 
deconfinement point Tc and string tension can be obtained. The Wilson loop serves as an 
important tool for studying confinement in gauge theories. The gauge string/duality is itself 
useful to calculate the Wilson loop from string configurations[5]. 
 
The spatial string tension can be easily extracted as the coefficient in the area law of a large 
rectangular Wilson loops [5]. In the non-Abelian gauge theories, the Wilson loop for large space 
like contours obeys the area law at arbitrary temperature [6]. This phenomenon is known as 
magnetic confinement and yields non-zero string tension. This can be dynamically understood by 
the fact that when the temperature of the system is increased, there is reduction in the phase 
space of the colour flux tube until it fills the whole space. Now, the flux tube begins to be 
squeezed between the two opposite sides of the temporal box. At temperatures far above the 
deconfinement temperature, the distribution of the colour flux tube along the temporal axis 
becomes uniform. Thus, the translational invariance in the time direction is restored and the 
Goldstone field describing the field fluctuations disappear. Even when the deconfinement phase 
transition was investigated by numerical simulations on lattice for pure SU(3) gauge theory[7], 
the data demonstrated strong suppression of the electric component of the correlator above Tc 
and subsequent persistence of the magnetic component. The contribution of the magnetic 
correlator remains visible even across the phase transition temperature. On the contrary, the 
electric part suddenly vanishes above Tc making the electric condensate drop to zero at the 
deconfining phase transition point [8].  
 
Mathematically, the spatial string tension can be expressed as the coefficient in the area law of a 
large rectangular Wilson loop Ws(R1,R2) in the  (x1,x2) plane and can be expressed as [9]:- 
 
                                                                           (1.1) 

  
Lattice simulations [10] indicated that at T ≥ 2Tc, the magnetic fields as determined by spatial 
string tension starts growing quadratically as σs(T)~T2 which projects forth the advent of a new 
visualization, called the dimensional reduction. Under this particular framework, the temporal 
direction is squeezed and the higher Matsubara frequencies are suppressed. This leads to the 
effective reduction of dynamics to three dimensional gluodynamics [11]. Thus, three 
dimensional lattice calculations help in the determination of physical quantities such as σs(T).  
 
We have studied the spatial string tension under two different models, which portray its 
behaviour both above and below the deconfinement temperature. One is the gluon chain model 
[12], where quenched SU(Nc) QCD approximations are utilized. Here, the spatial string tension 
behaviour is exclusively studied for temperatures less than the critical temperature and visible 
behavioural differences between the Nc=1 and Nc=3 limits are projected out. For temperatures 
greater than the critical temperature, we have studied the spatial string tension within a five 
dimensional framework, known as AdS/QCD [13].      
 
Gluon chain model and the effective spatial string tension  
String dynamics itself help in determining the deconfinement critical temperature Tc.  When the 
string connecting heavy quark-antiquark pair passes through heavy valence gluons (forming a 
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gluon chain), very high entropy is generated in this system. It provides a viable mechanism for 
predicting the value of Tc and also helps in studying the critical behaviour of string tension 
below Tc [12]. 
 
Soft stochastic background gluonic fields lead to the production of quark-antiquark strings, 
which sweeps out the flat surface of the corresponding Wilson loop. Moreover, string vibrations 
are produced by the fluctuations of the gauge field. These fluctuations could be related to the 
valence gluons through which the quark-antiquark string passes. The string may pass through 
many valence gluons leading to the production of the gluon chain. The energy of a single string 
bit between two nearest gluons in a chain is constant. It is worth noting that as long as thermal 
mass of a valence gluon is smaller (at low temperatures) than this energy, the general global 
dynamics of the string is unaffected and the gluons move together with the string. Further, when 
the system is heated, and at a certain temperature T0, the gluons thermal mass (α T) becomes 
larger than the free energy of the string bit. Now, there is a drastic change in the configuration of 
the system and the gluons become nearly static from the strings standpoint. Thereby, at T0<T<Tc, 
the gluons chain behaves as a sequence of static nodes with adjoint charges linked by 
independently fluctuating string bits. It is here that the entropy of the system becomes large. This 
occurs due to the fact that the gluon chain originating from a quark randomly walks over the 
lattice of static nodes towards an antiquark. The entropy of the system increases due to the fact 
that colour may change from one node to another during this random walk. This implies that 
every string bit may transport each of the Nc colour.  This increase in the entropy of the system 
leads to the deconfinement phase transition. 
 
The total free energy of the system is the sum of the usual linear potential and the free energy of 
the random walk. The entire procedural approach starts with the calculation of partition function 
for the gluon chain and the effective string tension, which is dependent upon the partition 
function is given as 
 

                                                                                            (2.1)             

 
where Z(R,T) is the partition function of the random walk and is given by 
 

                                            (2.2) 

 
Here s=aL is the Schwinger proper time (a is the length of one bit of string and L is the length of 
the gluon chain), β =1/T , σ is the zero temperature string tension and n is the number of a 
Matsubara mode. The n=0 term is significant at asymptotically large R’s, which is basically the 
region of interest and then 
 
 

                                                    (2.3) 

 
The value of Tc is estimated from the condition that the argument of the first square root vanishes 
and its value comes out to be Tc= 270 MeV [14] for Nc=3 and the effective length of one string 
bit is a ~ 0.31fm. T0 can be evaluated from the formula: 
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                                                                                                         (2.4) 

 
Now, considering the limiting case, when the string bits cannot change colour, then Nc=1 and 
equation 1 yields 

                                                                                                     (2.5) 

In this particular case, T0 can be determined directly from the equality of the gluons thermal 
mass in QCD to the free energy of one string bit [12], 
                                                                                                                                 (2.6) 

For a=0.22fm and g=2.5, giving T0= 85MeV and the critical temperature [12] Tc=290 MeV. 
 

 
Figure 1: Spreadsheet displaying the variation of spatial string tension(in GeV2) with temperature(in MeV) 

and physical string tension(inGeV2) for Nc=1. 
 

 

 
Figure 2: Spreadsheet displaying the variation of spatial string tension(in GeV2) with temperature(in MeV) 

and physical string tension(inGeV2) for Nc=3. 
 
Thus, for temperatures T0<T<Tc, the spatial string tension behaviourism is implicitly dependent 
upon two prominent features that is the physical string tension and temperature parameter itself. 
This particular analysis exhibits the fact that spatial string tension variation pattern can be 
effectively determined by varying these two parameters within their specified range. The 
physical string tension is varied within a range 0 to 0.2GeV2. We have plotted a three 
dimensional spreadsheet which clearly helps in visualising the spatial variation. Figures 1 and 2 
display the variation pattern for Nc=1 and Nc=3 respectively. Both the plots display observable 
differences and provide a platform for demonstrating evident difference between the Nc=1 and 
Nc=3 limit. It may however be pointed out that for temperatures far above the critical 
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temperature (more than a few hundred MeV), the spatial string tension displays a linear variation 
with the temperature. The spreadsheet for Nc=1 limit covers the entire available spatial 
dimensions, whereas the Nc=3 three dimensional plot is restricted within a smaller domain and 
the spreadsheet possesses an effective curvature.  
 
3. Modelling of spatial string tension within the five dimensional AdS/QCD framework 
We have scrutinized the modelling of temperature dependence of spatial string tension within a 
five dimensional framework, known as AdS/QCD[13]. The SU(N) gauge theories undergo a 
phase transition to a deconfined phase at high temperature. The pseudo-potential extracted from 
spatial Wilson loops does not exhibit quantative drastic change at deconfinement temperature Tc. 
This owes to the fact that certain confining properties survive in the high temperature phase. 
High temperature perturbation theory is helpful in determining the behaviourism of pseudo 
potential for temperatures well above Tc. However, near the phase transition point, the non-
perturbative effects pose difficulties in the computation of the pseudo potentials. At this point the 
AdS/QCD approach came to the rescue which deals with a string description of strong 
interactions. 
 
The five dimensional AdS/QCD approach helps in exploring the temperature dependence of the 
spatial string tension. Spatial Wilson loops are studied which obey an area law and provide string 
tension. The whole framework of this approach relies upon c, which is the Regge parameter at 
zero temperature and its value (c~0.9GeV2) is fixed from the ρ meson Regge trajectory[15], with 
the co-efficient of proportionality fixed from the linear term of the Cornell potential.  
 
A rectangular loop C is considered along two spatial directions (x,y) on the boundary(z=0) of a 
five dimensional space. One of the direction is taken to be large, say Y→∞ and the quark and 
antiquark are positioned at x=r/2 and x=-r/2 respectively. The Nambu-Goto action with the world 
sheet co-ordinates x and y is evaluated and equation of motion for z is determined. The z 
dependent effective string tension as followed from the AdS metric is viewed simply as 
 

                                                                                                         (3.1)                                        

The behaviour of potential V=σ(z) shows that it reaches a minimum value at z=zc (  and 

) , where the repulsive force prevents the string from getting deeper in the z 
direction. Because the string ends on infinitely heavy quark antiquark pair set at z=0, it faces a 
minima of potential which can be termed as a wall with condition 
                                                                       z0<zc                                                                                               (3.2) 
Also, in the limit as c goes to 0, z0 is bounded by a horizon (z=zT) and this gives rise to a wall 
                                                                      z0<zT                                                                                                (3.3) 
Thus, two walls become pertinent in this visualization. This projects out to be the most 
prominent factor in determining the temperature dependence of the spatial string tension. 
 
Temperature dependence of spatial string tension is determined by evaluating r, which is a 
continuously growing function of z0. This means that large distances correspond to a region near 
the upper endpoint which is the smallest of zc and zT and this leads to v~1. 
Finally 

                                                                               (3.4) 
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Where β is a polynomial in and and is expressed as 

                                                                   (3.5) 
The long distance behaviour (upper endpoint, r→∞) of the energy of the configuration can be 
expressed as 

                                                                          (3.6) 

From, the long distance pseudo-potential turns out to be linear. The spatial string tension is given 
by 

                                                                            (3.7) 

                                     where                                                                               (3.8) 

This value of critical temperature corresponds to a point when zc=zT, that is the two walls 
coincide at the phase transition point and Tc turns out to be ≈ 210 MeV. Also it is found from and 
that 
 

                                                                                                                             (3.9)                                              

Value of g(≈0.94) comes from [15] the linear term of the Cornell potential. The approximation is 
in agreement with the lattice data for SU(3) gauge theory[7]. We have plotted (Figure3) the 
spatial string tension as a function of temperature for temperatures above critical temperature Tc. 
Data points have been plotted for the upper (0.2GeV2) and lower limits (0.87GeV2) of the 
physical string tension[16]. These limits may vary from one system (hadron configurations) to 
another, but our aim is to study the general behaviour, which should be same for all systems. The 
spatial string tension increases exponentially with temperature and the observed pattern shows 
similar behaviourism for the two different values of physical string tension, with the variation 
being slightly magnified as we proceed from the lower to the upper range.   
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Figure 3: Variation pattern of spatial string tension with temperature for upper and lower values of physical 

string tension. 
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When SU(2) gauge theory is considered and temperature dependence of spatial string tension is 
interrogated and it was found that 

                                                                                   (3.10)       

(g depends on the number of colours, so its value has to be adjusted to SU(2) by employing fit 

 at T=Tc to the data from [17]).  
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Figure 4: Variation of ρs(in units of Tc) with temperature T(in MeV) 

           
The temperature dependence of string tension at high temperature is determined by the β 
function of gauge theory. Figure 4 demonstrates the variation of ρs/Tc with temperature T for 
temperatures a few MeV above the critical temperature. For high temperatures, that is values 
greater than around 300 MeV, the plot shows a linear variation. An appreciable curvature is 
visible at lower values of T, that is near the critical temperature. Thus we can say the temperature 
dependence of string tension is very soft below Tc and sharp above Tc. 
 

CONCLUSION 
 

Our analysis evidently reveals the intrinsic and intimate connection between the QCD 
thermodynamics and the spatial string tension parameter. The behavioural implications of the 
Wilson loops at high temperature helped in probing the deconfinement physics and thereby 
proved useful in determining the temperature dependence of the spatial string tension under the 
gluon chain model and within the AdS/QCD picture. Under the gluon chain model, for 
temperatures T0<T<Tc, the spatial string tension variation attributes its dependency solely to   the 
physical string tension and the temperature parameter and their corresponding variation pattern 
clearly depicts the fact that Nc=3 limit extensively stands apart from the Nc=1 limit. 
 
Modelling of spatial string tension within the five dimensional AdS/QCD framework reveals that 
for SU(3) gauge theory, the spatial string tension increases exponentially with temperature for 
temperature range lying above Tc. However when the same analysis is performed under the 
SU(2) gauge theory, a linear variation is observed. Thus, the variation pattern of spatial string 
tension parameter is sensitive to the gauge theory within which we perform our analysis.   
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