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ABSTRACT

A toxicity data set of 58 phenols to Tetrahymenégynis expressed as pE§(Log to base 10 of Eg) was taken
from literature. 70% (41 phenols) of the data wasdias training set while 30% (17 phenols) was asetbst set.
Muti-linear Regression equations were built usihg experimental pEgas dependent variable and the various
molecular descriptors as independent variables. Bést Quantitative structure-toxicity relationsi{ipSTR) model
hinted that the toxicity of phenol was dominantifluenced by octanol-water partition coefficienid®P) and
moment of inertia (MOMI) descriptors. The resultghe statistical analysis of the two parameter eiadclude; n

= 41, LOF score = 0.079, R= 0.6691, R,y = 0.6517, G o0 = 0.6260, F-value = 38.42. The generated QSTR
model has been proven to possess statistical gignife, high predictive power and wide applicabildomain.
Thus, it is recommended for environmental risk s@sent of phenols.

Keywords: QSTR, Phenols, Toxicity, Tetrahymena pyriformispg®, MOMI.

INTRODUCTION

Phenols compounds are basic materials for indystguction, which are commonly used in chemicaltisgsis.
They can spread through air and water, with stroarginogenicity, teratogenicity and mutagenicity2]1 which
will cause great damage to environment, plantsmalsi and human health. In view of the health ingpian
associated with the pollution of the environmenthwihese compounds, their quantitative risk assessivecomes
increasingly important in the modern society angl@vly incorporated into legislation of differecbuntries [3].
For instance, the European Union (EU) has introdube Registration, Evaluation and AuthorizatiorChfemicals
(REACH) program for assessment of human and enwienttal risk of all chemicals that are producedngparted
in the amount greater than 1 ton per year [3].slicliear that if such a risk assessment is perforpagly
experimentally, it would require a huge amount e$aurces as well as time. Therefore, the introdyredram

encouraged the use of QSTR modeling and othenaliges especially for the risk assessment of ctasithat are
produced or imported in smaller quantities [3]

QSTR modelling is based on the idea that all tii@mation related to a molecule can be derived fitsnchemical
nature by means of parameters that encode or Hesdifferent molecular features, and these paras)ete
descriptors, can be correlated to a particular ébedmor biochemical activity, i.e

Activity = F(structure) =F(-) [4].
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The aim of this research is to construct a rati@nantitative structure-toxicity relationship model predicting the
acute toxicity of phenols.
MATERIALSAND METHODS

A toxicity data set of 41 phenols Tetrahymena pyriformiexpressed as pE&(Log to base 10 of Bf) was taken
from literature. The entire data set and their eeipe pEG, are presented in Table 1. 70% (41 phenols) ofitta
was used as training set while 30% (17 phenols)usasd as test set

2.1 Molecular descriptors

All computations were performed by usiBgartan’ 14 softwaréSpartan wave function, 2014). The geometries of
all 58 phenols were optimized with Semi-empiricBM3). Padel descriptortool kitwas used to compute the
molecular descriptors of each optimized molecules.

2.2 Statistical analysis
Genetic Function Approximation (GFA) is a widelyedssstatistical analysis method. In this papéaterial Studio
statistical software was employed to realize theA@Ralysis. The linear relationship between thacibxdata of
the compounds and their structure parameters wesl foy GFA-multiple stepwise regression metho®%%
confidence intervals.

It is a distinctive characteristic of GFA that @uwd create a population of models rather thamglsimodel. GFA
algorithm, selecting the basic functions genetycatleveloped better models than those made uskpgwise
regression methods [5] and then, the models weammated using the “lack of fit” (LOF), which was emured
using a slight variation of the original Friedmamnfiula in equation 1, so that best model receihedbiest fitness
score [6].

|_OF:SSE/1—%)2 Egn. 1

Table 1: Experimental pECs,0f the phenols studied and their CASregistry number

Compound Name CASH Toxicity
1 4-Fluorophenc 00037:-41-5 0.0z
2 2-Cyanophenol 000611-201 0.03
3 5-Fluoro-2-hydroxyacetophenong 000394-32-1 0.04
4 2,4-Dimethylphenol 000105-67-P 0.07
5 2-Hydroxyacetophenone 000118-93-4 0.08
6 2,5-Dimethylphenol 000095-87-4 0.08
7 3,E-Dimethylphenc 00010¢68-9 0.11
8 4'-Hydroxypropiophenone 000070-702 0.17
9 2,3-Dimethylphenol 000526-75-p 0.12
10 3,4-Dimethylphenol 000095-65-8 0.12
11 2-Ethylphenol 000090-00-6 0.16
12 2-Chlorophenol 000095-57-8 0.18
13 4-Hydroxy-2-methylacetophenone  000875-59-2 0.19
14 4-Ethylphenol 000123-07-9 0.2
15 3-Ethylphenol 000620-17-f 0.23
16 2,3,6-Trimethylphenol 002416-9446 0.28
17 2,4,6-Trimethylphenol 000527-6046 0.28
18 2-Hydroxy-5-methylacetophenone  001450-72-2 0.31
19 2-Bromophenol 000095-56-]7 0.33
20 5-Bromo-2-hydroxybenzyl alcohal  002316-64-5 0.34
21 2,3,5-Trimethylphenol 000697-82{5 0.36
22 2-Chloro-5-methylphenol 000615-74+7 0.39
23 4-Allyl-2-methoxyphenol 000097-53-p 0.42
24 2-Hydroxybenzaldehyde 000090-02-8 0.42
25 2,6-Difluorophenol 028177-48-P 0.47
26 4-Cyanophenol 000767-00{0 0.52
27 4-Propyloxyphenol 018979-50-5 0.52
28 4-Chlorophenol 000106-48- 0.55
29 5-Methyl-2-nitrophenol 000700-38- 0.59
30 2-Bromo-4-methylphenol 006627-55{0 0.6
31 2,4-Difluorophenol 000367-27-1 0.6
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32 3-Isopropylphenol 000618-45-1 0.6
33 2-Chloro-4,5-dimethylphenol 001124-04{5 0.6
34 4-Butoxyphenol 000122-94-1L 0.7

35 4-Chlorc-2-methylphenc 00157(-64-5 0.7

36 3-tert-Butylphenol 000585-34-P 0.73
37 4-Chloro-3-methylphenol 000059-50+7 0.8
38 4-lodophenol 000540-38-p 0.85
39 2,2"-Biphenol 001806-29-Y 0.88
40 4-tert-Butylphenol 000098-54-4 0.91
41 3,4,5-Trimethylphenc 00052°-54-8 0.9

42 4-sec-Butylphenol 000099-7148 0.99
43 2,4-Dichlorophenol 000120-83 1.04]
44 4-Chloro-3-ethylphenol 014143-3219 1.08
45 2-Phenylphenol 000090-43{7 1.09
46 3-Chloro-4-fluorophenol 002613-23{2 1.13
47 6-tert-Butyl-2,4-dimethylphenol 001879-09t0 .16
48 4-Chloro-3,5-dirnethylphenol 00088-04- 1.2
49 4-Cyclohexylphenol 001131-6048 1.56|
50 3,4-Dinitrophenol 000577-71-9 0.27
51 2,6-Dinitrophenol 000573-56-8 0.54
52 2,6-Dichloro-4-nitrophenol 000618-8044 0.63
53 2,5-Dinitrophenol 000329-71-5 0.95
54 4-Bromo-2-fluoro-6-nitrophenol 000320-7613 1.62
55 2-Amino-4-nitrophenol 061702-43-D 0.47
56 2,6-Diiodo-4-nitrophenol 000305-851 1.71
57 3-Fluoro-4-nitrophenol 000394-41{2 0.94
58 4-Hexyloxyphenol 018979-55-p 1.64

2.3 Validation and evaluation

Testing the stability, predictive power and gerieedion ability of the models is a very importates in QSAR
study. As for the validation of predictive power ®fQSAR model, two basic principles (internal vatidn and
external validation) are available. The cross-wlizh is one of the most popular methods for irakualidation. In
this paper, the internal predictive capability bé tmodel was evaluated by leave-one-out crossataitl (F o).
Q%00 of 0.5 and above is an indication that the QSARIehds robust and highly predictive [7].

RESULTSAND DISCUSSION

3.1 QSAR models and analysis
The best three GFA-MLR models are depicted my Model2, and 3. Based on the model with the leakt ¢é fit
(LOF) score, Model 1 was selected as the optimurARBodel for predicting the toxicity of phenols.

Model 1:

pECs,= 0.282582519 XlogP + 0.000315219 MOMI — 0.212957547

n = 41, LOF score = 0.079/R 0.6691, R, = 0.6517, @ o0 = 0.6260, F-value = 38.42
Model 2:

pECs,= 0.338953390 XlogP + 0.000747736MOMI - 0.046790807.mass - 0.056557175
n =41, LOF score = 0.0817R 0.7076, R,y = 0.6839, @ oo = 0.6544, F-value = 29.85
Model 3:

pECso=0.003370712 Mw + 0.335758244 XlogP — 0.554134121

n =41, LOF score = 0.0857R 0.6454, R,y = 0.5900, @ o0 = 0.5900, F-value = 34.58

The definition of the descriptors in the modeldue; MOMI = moment of inertia alongdw = molecular weight,
WYV. Mass = non-directional WHIM weighted by atomic masslogP = measure of octanol-water partition
coefficient. In the equatiom is the number of compounds?iR the multiple correlation coefficient,zﬁ,-is adjusted
R?, F stands for significance of regression

The high coefficient of determination 9Ris an indication that the model explained a Veigh percentage of the
response variable (descriptor) variation, high gmofor a robust QSAR model. The high adjustéc(@adi) value

and its closeness in value to the value Gifiplies that the model has excellent explanatorygrdto the descriptors
in it. Also, the high and closeness of @lue to R revealed that the model was not over-fitted. Rigglidges the
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overall significance of the regression coefficieftse high F value of the model is an indicatioat tthe regression
coefficients are significant. The high predictahilbf model 1 is also evidenced by the low residizdilies observed
in Table 2 which gives the comparison of observadl @redictedpEgg of the molecules.

A good predictive ability of the model 1 for thaitring and test set compounds is depicted by Fghith gives the
plot of predicted values of the test and trainiats @nd their experimental values. Also, Fig. 2githe residual plot
of the optimum model. Most of the calculated reailduare distributed on two sides of the zero Ime&pnclusion
may be drawn that there is no systematic errdnéndevelopment of the present model.

Based on model 1, the main factors that could imthecbiological toxicity of phenol includélogP (octanol-water
partition coefficient) andMOMI| (moment of inertia of a molecule). According tatitic learning theory,
comparing the importance of each parameter entafisknowledge of the standardize coefficient ofmhi@ the
regression equation. The bigger the absolute valube standardized coefficient, the greater tHuémce of the
parameter. In the equation, the standardized coefiti of XlogP andMOMI are 0.2825 and 0.0003, respectively.
The two parameters describes the lipophilicity ammlecular resistance to changes in the rotatioection. Their
positive coefficient implies that thECs, of the studied molecules increases with the irsea values of these
descriptors in the molecule.

Table 2: Comparison of actual pECs, and pred. pECsp of the Training set using model 1

Compound | Actual pECs, | Predicted pECs | Residual
2 0.0300 0.1090 -0.0790
3 0.0400 0.3260 -0.2860
4 0.070( 0.380( -0.310(

6 0.080( 0.440¢ -0.3601

7 0.1100 0.3887 -0.2787
8 0.1200 0.3072 -0.1872
12 0.1800 0.3796 -0.1996
13 0.1900 0.4446 -0.2546
15 0.230( 0.367¢ -0.137:
17 0.280( 0.470¢ -0.190¢
18 0.3100 0.4590 -0.1490
19 0.3300 0.4149 -0.0849
20 0.3400 0.4760 -0.1360
21 0.3600 0.5306 -0.17064
23 0.420( 0.762¢ -0.342¢
24 0.420( 0.212} 0.207:
26 0.5200 0.0799 0.4401
27 0.5200 0.6399 -0.1199
28 0.5500 0.3408 0.2092
29 0.5900 0.6621 -0.0721
30 0.6000 0.5963 0.0038
31 0.600( 0.227( 0.373(
32 0.6100 0.6474 -0.0374
34 0.7000 0.9484 -0.2484
36 0.7300 0.7986 -0.0686
37 0.8000 0.4224 0.3776
38 0.8500 0.6249 0.2251
40 0.9100 0.8133 0.0967
41 0.9300 0.5909 0.3391
42 0.9800 0.9062 0.0738
43 1.0400 0.5976 0.4424
44 1.0800 0.5907 0.4893
45 1.0900 0.8465 0.2435
47 1.1600 0.9849 0.1751
49 1.5600 1.2435 0.3165
50 0.2700 0.4468 -0.1768
51 0.5400 0.9504 -0.4104
53 0.9500 0.7658 0.1842
55 0.4700 0.3085 0.1615
56 1.7100 1.7330 -0.023(
58 1.6400 1.6750 -0.0345p
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Fig. 2: Plot of theresiduals versus the experiment pECsovalues of Model 1
CONCLUSION

According to the QSAR study, Egbf halogenated phenols tetrahymena pyriformigicreases with the values of
the descriptors;XlogP (octanol-water partition coefficient) anblOMI (moment of inertia of a molecule).
Validation of the optimum model shows that it ha®d stability and great predictive power and ahstan be of
immense help in predicting the acute toxicity oépals.
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