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ABSTRACT 
 
A toxicity data set of 58 phenols to Tetrahymena pyriformis expressed as pEC50 (Log to base 10 of EC50) was taken 
from literature. 70% (41 phenols) of the data was used as training set while 30% (17 phenols) was used as test set. 
Muti-linear Regression equations were built using the experimental pEC50as dependent variable and the various 
molecular descriptors as independent variables. The best Quantitative structure-toxicity relationship (QSTR) model 
hinted that the toxicity of phenol was dominantly influenced by octanol-water partition coefficient (XlogP) and 
moment of inertia (MOMI) descriptors. The results of the statistical analysis of the two parameter model include; n 
= 41, LOF score = 0.079, R2 = 0.6691, R2adj. = 0.6517, Q2

LOO = 0.6260, F-value = 38.42. The generated QSTR 
model has been proven to possess statistical significance, high predictive power and wide applicability domain. 
Thus, it is recommended for environmental risk assessment of phenols. 
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 INTRODUCTION 
 

Phenols compounds are basic materials for industry production, which are commonly used in chemical synthesis. 
They can spread through air and water, with strong carcinogenicity, teratogenicity and mutagenicity [1-2], which 
will cause great damage to environment, plants, animals and human health. In view of the health implication 
associated with the pollution of the environment with these compounds, their quantitative risk assessment becomes 
increasingly important in the modern society and is slowly incorporated into legislation of different countries [3]. 
For instance, the European Union (EU) has introduced the Registration, Evaluation and Authorization of Chemicals 
(REACH) program for assessment of human and environmental risk of all chemicals that are produced or imported 
in the amount greater than 1 ton per year [3]. It is clear that if such a risk assessment is performed purely 
experimentally, it would require a huge amount of resources as well as time. Therefore, the introduced program 
encouraged the use of QSTR modeling and other alternatives especially for the risk assessment of chemicals that are 
produced or imported in smaller quantities [3] 
 
QSTR modelling is based on the idea that all the information related to a molecule can be derived from its chemical 
nature by means of parameters that encode or describe different molecular features, and these parameters, or 
descriptors, can be correlated to a particular chemical or biochemical activity, i.e  
 
Activity = F(structure) = F(·)         [4]. 
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The aim of this research is to construct a rational Quantitative structure-toxicity relationship model for predicting the 
acute toxicity of phenols. 

MATERIALS AND METHODS 
 

A toxicity data set of 41 phenols to Tetrahymena pyriformis expressed as pEC50 (Log to base 10 of EC50) was taken 
from literature. The entire data set and their respective pEC50 are presented in Table 1. 70% (41 phenols) of the data 
was used as training set while 30% (17 phenols) was used as test set 
 
2.1 Molecular descriptors 
All computations were performed by using Spartan’ 14 software (Spartan wave function, 2014). The geometries of 
all 58 phenols were optimized with Semi-empirical (PM3). Padel descriptortool kit was used to compute the 
molecular descriptors of each optimized molecules. 
 
2.2 Statistical analysis 
Genetic Function Approximation (GFA) is a widely-used statistical analysis method. In this paper, Material Studio 
statistical software was employed to realize the GFA analysis. The linear relationship between the toxicity data of 
the compounds and their structure parameters was fitted by GFA-multiple stepwise regression method at 95% 
confidence intervals.  
 
It is a distinctive characteristic of GFA that it could create a population of models rather than a single model. GFA 
algorithm, selecting the basic functions genetically, developed better models than those made using stepwise 
regression methods [5] and then, the models were estimated using the “lack of fit” (LOF), which was measured 
using a slight variation of the original Friedman formula in equation 1, so that best model received the best fitness 
score [6]. 
 

LOF = SSE / (1 −
����

�
)2                                                          Eqn. 1 

 
Table 1: Experimental pEC50 of the phenols studied and their CAS registry number 

 
Compound Name CAS# Toxicity 

1 4-Fluorophenol 000371-41-5 0.02 
2 2-Cyanophenol 000611-20-1 0.03 
3 5-Fluoro-2-hydroxyacetophenone 000394-32-1 0.04 
4 2,4-Dimethylphenol 000105-67-9 0.07 
5 2-Hydroxyacetophenone 000118-93-4 0.08 
6 2,5-Dimethylphenol 000095-87-4 0.08 
7 3,5-Dimethylphenol 000108-68-9 0.11 
8 4'-Hydroxypropiophenone 000070-70-2 0.12 
9 2,3-Dimethylphenol 000526-75-0 0.12 
10 3,4-Dimethylphenol 000095-65-8 0.12 
11 2-Ethylphenol 000090-00-6 0.16 
12 2-Chlorophenol 000095-57-8 0.18 
13 4-Hydroxy-2-methylacetophenone 000875-59-2 0.19 
14 4-Ethylphenol 000123-07-9 0.2 
15 3-Ethylphenol 000620-17-7 0.23 
16 2,3,6-Trimethylphenol 002416-94-6 0.28 
17 2,4,6-Trimethylphenol 000527-60-6 0.28 
18 2-Hydroxy-5-methylacetophenone 001450-72-2 0.31 
19 2-Bromophenol 000095-56-7 0.33 
20 5-Bromo-2-hydroxybenzyl alcohol 002316-64-5 0.34 
21 2,3,5-Trimethylphenol 000697-82-5 0.36 
22 2-Chloro-5-methylphenol 000615-74-7 0.39 
23 4-Allyl-2-methoxyphenol 000097-53-0 0.42 
24 2-Hydroxybenzaldehyde 000090-02-8 0.42 
25 2,6-Difluorophenol 028177-48-2 0.47 
26 4-Cyanophenol 000767-00-0 0.52 
27 4-Propyloxyphenol 018979-50-5 0.52 
28 4-Chlorophenol 000106-48-9 0.55 
29 5-Methyl-2-nitrophenol 000700-38-9 0.59 
30 2-Bromo-4-methylphenol 006627-55-0 0.6 
31 2,4-Difluorophenol 000367-27-1 0.6 
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32 3-Isopropylphenol 000618-45-1 0.61 
33 2-Chloro-4,5-dimethylphenol 001124-04-5 0.69 
34 4-Butoxyphenol 000122-94-1 0.7 
35 4-Chloro-2-methylphenol 001570-64-5 0.7 
36 3-tert-Butylphenol 000585-34-2 0.73 
37 4-Chloro-3-methylphenol 000059-50-7 0.8 
38 4-Iodophenol 000540-38-5 0.85 
39 2,2'-Biphenol 001806-29-7 0.88 
40 4-tert-Butylphenol 000098-54-4 0.91 
41 3,4,5-Trimethylphenol 000527-54-8 0.93 
42 4-sec-Butylphenol 000099-71-8 0.98 
43 2,4-Dichlorophenol 000120-83-2 1.04 
44 4-Chloro-3-ethylphenol 014143-32-9 1.08 
45 2-Phenylphenol 000090-43-7 1.09 
46 3-Chloro-4-fluorophenol 002613-23-2 1.13 
47 6-tert-Butyl-2,4-dimethyIphenol 001879-09-0 .16 
48 4-Chloro-3,5-dirnethyIphenol 00088-04-0 1.2 
49 4-Cyclohexylphenol 001131-60-8 1.56 
50 3,4-Dinitrophenol 000577-71-9 0.27 
51 2,6-Dinitrophenol 000573-56-8 0.54 
52 2,6-Dichloro-4-nitrophenol 000618-80-4 0.63 
53 2,5-Dinitrophenol 000329-71-5 0.95 
54 4-Bromo-2-fluoro-6-nitrophenol 000320-76-3 1.62 
55 2-Amino-4-nitrophenol 061702-43-0 0.47 
56 2,6-Diiodo-4-nitrophenol 000305-85-1 1.71 
57 3-Fluoro-4-nitrophenol 000394-41-2 0.94 
58 4-Hexyloxyphenol 018979-55-0 1.64 

 
2.3 Validation and evaluation 
Testing the stability, predictive power and generalization ability of the models is a very important step in QSAR 
study. As for the validation of predictive power of a QSAR model, two basic principles (internal validation and 
external validation) are available. The cross-validation is one of the most popular methods for internal validation. In 
this paper, the internal predictive capability of the model was evaluated by leave-one-out cross-validation (Q2

LOO). 
Q2

LOO of 0.5 and above is an indication that the QSAR model is robust and highly predictive [7]. 
 

RESULTS AND DISCUSSION 
 

3.1 QSAR models and analysis 
The best three GFA-MLR models are depicted my Models 1, 2, and 3. Based on the model with the least lack of fit 
(LOF) score, Model 1 was selected as the optimum QSAR model for predicting the toxicity of phenols. 
 
Model 1: 
�	
��=  0.282582519	�����	 + 	0.000315219	����	 − 	0.212957547 
n = 41, LOF score = 0.079, R2 = 0.6691, R2adj. = 0.6517, Q2LOO = 0.6260, F-value = 38.42 
Model 2: 
�	
��= 0.338953390 XlogP + 0.000747736MOMI - 0.046790507 WV.mass - 0.056557175 
n = 41, LOF score = 0.081, R2 = 0.7076, R2adj. = 0.6839, Q2LOO = 0.6544, F-value = 29.85 
Model 3: 
�	
��= 0.003370712	� 	 + 	0.335758244	����� − 	0.554134121 
n = 41, LOF score = 0.085, R2 = 0.6454, R2adj. = 0.5900, Q2LOO = 0.5900, F-value = 34.58 
 
The definition of the descriptors in the models include; MOMI = moment of inertia along, Mw = molecular weight, 
WV. Mass = non-directional WHIM weighted by atomic mass, XlogP = measure of octanol-water partition 
coefficient. In the equation, n is the number of compounds, R2 is the multiple correlation coefficient, R2

adj is adjusted 
R2, F stands for significance of regression   
 
The high coefficient of determination (R2) is an indication that the model explained a very high percentage of the 
response variable (descriptor) variation, high enough for a robust QSAR model. The high adjusted R2 (R2

adj) value 
and its closeness in value to the value of R2 implies that the model has excellent explanatory power to the descriptors 
in it. Also, the high and closeness of Q2 value to R2 revealed that the model was not over-fitted. F value judges the 
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overall significance of the regression coefficients. The high F value of the model is an indication that the regression 
coefficients are significant. The high predictability of model 1 is also evidenced by the low residual values observed 
in Table 2 which gives the comparison of observed and predictedpEC50 of the molecules. 
 
A good predictive ability of the model 1 for the training and test set compounds is depicted by Fig. 1 which gives the 
plot of predicted values of the test and training sets and their experimental values. Also, Fig. 2 gives the residual plot 
of the optimum model. Most of the calculated residuals are distributed on two sides of the zero line, a conclusion 
may be drawn that there is no systematic error in the development of the present model. 
 
Based on model 1, the main factors that could impact the biological toxicity of phenol include XlogP (octanol-water 
partition coefficient) and MOMI (moment of inertia of a molecule). According to statistic learning theory, 
comparing the importance of each parameter entails the knowledge of the standardize coefficient of them in the 
regression equation. The bigger the absolute value of the standardized coefficient, the greater the influence of the 
parameter. In the equation, the standardized coefficient of XlogP and MOMI are 0.2825 and 0.0003, respectively. 
The two parameters describes the lipophilicity and molecular resistance to changes in the rotation direction. Their 
positive coefficient implies that the EC50 of the studied molecules increases with the increase in values of these 
descriptors in the molecule. 
 

Table 2: Comparison of actual pEC50 and pred. pEC50 of the Training set using model 1 
 

Compound Actual pEC50 Predicted pEC50 Residual 
2 0.0300 0.1090 -0.0790 
3 0.0400 0.3260 -0.2860 
4 0.0700 0.3800 -0.3100 
6 0.0800 0.4408 -0.3607 
7 0.1100 0.3887 -0.2787 
8 0.1200 0.3072 -0.1872 
12 0.1800 0.3796 -0.1996 
13 0.1900 0.4446 -0.2546 
15 0.2300 0.3673 -0.1373 
17 0.2800 0.4705 -0.1905 
18 0.3100 0.4590 -0.1490 
19 0.3300 0.4149 -0.0849 
20 0.3400 0.4760 -0.1360 
21 0.3600 0.5306 -0.17064 
23 0.4200 0.7625 -0.3425 
24 0.4200 0.2127 0.2073 
26 0.5200 0.0799 0.4401 
27 0.5200 0.6399 -0.1199 
28 0.5500 0.3408 0.2092 
29 0.5900 0.6621 -0.0721 
30 0.6000 0.5963 0.0038 
31 0.6000 0.2270 0.3730 
32 0.6100 0.6474 -0.0374 
34 0.7000 0.9484 -0.2484 
36 0.7300 0.7986 -0.0686 
37 0.8000 0.4224 0.3776 
38 0.8500 0.6249 0.2251 
40 0.9100 0.8133 0.0967 
41 0.9300 0.5909 0.3391 
42 0.9800 0.9062 0.0738 
43 1.0400 0.5976 0.4424 
44 1.0800 0.5907 0.4893 
45 1.0900 0.8465 0.2435 
47 1.1600 0.9849 0.1751 
49 1.5600 1.2435 0.3165 
50 0.2700 0.4468 -0.1768 
51 0.5400 0.9504 -0.4104 
53 0.9500 0.7658 0.1842 
55 0.4700 0.3085 0.1615 
56 1.7100 1.7330 -0.0230 
58 1.6400 1.6750 -0.03450 
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Fig. 1: Comparison between the predicted and experimental values of pEC50 

 

 
 

Fig. 2: Plot of the residuals versus the experiment pEC50values of Model 1 
 

CONCLUSION 
 

According to the QSAR study, EC50 of halogenated phenols to tetrahymena pyriformis increases with the values of 
the descriptors; XlogP (octanol-water partition coefficient) and MOMI (moment of inertia of a molecule). 
Validation of the optimum model shows that it has good stability and great predictive power and as such can be of 
immense help in predicting the acute toxicity of phenols. 
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