# Journal of Computational Methods in Molecular Design, 2013, 3 (3):19-25



Scholars Research Library (http://scholarsresearchlibrary.com/archive.html)



# Solvent effects on the relative stability for tautomerism of (*R*)-4-amino-1,2oxazolidin-3-one(Cycloserine). Ab initio and Density functional theory calculations

N. Surendra Babu

College of Natural and Computational Science (CN&CS), Department of chemistry Hawassa University, Hawassa, Post box No:5 ETHIOPIA

# ABSTRACT

Relative tautomerization energies, dipole moments and polarizabilities for the tautomers of (R)-4-amino-1,2oxazolidin-3-one (Cycloserine) was studied by quantum-chemical calculations, using the HF and DFT(B3LYP) level of theory with the 6-311++G(d,p) basis set in the gas phase and different solvents using SCRF model, with full geometry optimization. Entropies, enthalpies, Gibbs free energies and equilibrium constants for the tautomerization process of cycloserine were calculated. The calculations showed that, the NH tautomer form is the most stable than OH tautomer form in the gas phase and other solvents. Then important molecular parameters and selected IR frequencies results in the gas phase and solvents were extracted. The stability of the tautomers relate to the nature of solvents. In the solution and with increase of polarity; NH isomers were more stable.

Key words: Cycloserine, Ab intio HF, DFT method, Tautomerism, thermodynamic Parameters, equilibrium constant.

# INTRODUCTION

D-Cycloserine, a structural analog of D-alanine, is a broad spectrum antibiotic produced by certain strains of Streptomyces orchidaceus or S. garphalus[1-3]. D-cycloserine (at 100 to 200 µg/ml) inhibits the synthesis of bacterial cell walls (involving peptidoglycan synthesis) by preventing formation of D-alanine from L-alanine and hence the formation of peptide bonds involving D-alanine[3]. D-cycloserine has antibiotic activity in vitro against growth phase Gram-negative bacteria including *Escherichia coli* (working concentration of approx. 200 µg/ml)[4], strains of Staphylococcus aureus, Nocardia species and Chlamydia[2], and some mycobacteria including Mycobacterium tuberculosis. The minimum inhibitory concentrations (MIC) in vitro for M. tuberculosis range from 5-20 µg/ml. Studies in vitro show no suppression of growth in cultures made in media containing D-alanine which appears to block the antibacterial action of D-cycloserine[2]. Cycloserine is a highly polar general antibiotic which can also be used in the treatment of pulmonary tuberculosis [4]. Until recently it has not been in wide-spread use for the treatment of TB due to its toxicity. With more drug-resistant strains of tuberculosis emerging, cycloserine treatment is becoming more common [5]. Bioequivalency has been demonstrated when cycloserine is administered in different formulations [6]. It also exhibits the ability to increase the levels of the inhibitory neurotransmitter  $\gamma$ aminobutyric acid (GABA) [7] as well as inhibit the pyridoxal- 5'-phosphate (PLP) enzyme GABAaminotransferase [7,8]. The interaction of cycloserine with a number of other PLP enzymes has also been studied [9].

Available online at www.scholarsresearchlibrary.com

# N. Surendra Babu

Knowledge of the geometric and electronic structure as well as the relative stability of tautomeric forms provides a basis for understanding biological activity of cycloserine . In addition, knowing how these tautomerisation energies change in different environments can give an insight into the influence of solvent effects on molecular stability. Furthermore, a deeper knowledge of the tautomerism of the cycloserine in different environments is essential to an understanding of the pharmacological properties of this molecule and the design of new derivatives with improved activity. Literature survey reveals that to the best of our knowledge, no ab initio HF/DFT quantum chemical calculations of cycloserine in different solvents have been reported so far. In this study, we have investigated the structural geometries, dipole movements, thermodynamic properties and equilibrium constants of cycloserine molecule theoretically, by performing Ab intio and DFT calculations because of biological and medical importance of title compound.

# MATERIALS AND METHODS

# **COMPUTATIONAL METHODS**

Theoretical calculations were carried out at the Hartree-Fock level (HF)[10] and The Becke's three parameter hybrid exchange functional [11] with Lee-Yang-Parr correlation functionals (B3LYP) [12,13] of the density functional theory [14] and 6-311++G(d,p) basis set were chosen to optimize the structures of the molecules under investigation. All these calculations were carried out on a Pentium V personal computer by means of GAUSSIAN09 program package [15] and for our computations. First, all compound's structures were drawn using Gaussview 5.08 program [16]. Positive values of all the calculated vibrational wave numbers confirmed the geometry to be located at true local minima on the potential energy surface. The stationary structures are confirmed by ascertaining that all ground states have only real frequencies. Thermodynamic quantities were obtained through standard harmonic oscillator-rigidrotator treatments. Until recent years, many theoretical studies with quantum chemical program packages have been carried out without incorporating solvent effects. As calculations are usually carried out with an isolated molecule, which simulates the behavior of the gas phase, information derived from calculations may often show a large discrepancy, when compared to results that mostly come from experiments in solution. Recently, a great deal of effort has been given to overcome this problem [17-19]. One quick and popular approach is the SCRF method, in which solvents are treated as a dielectric continuum that interacts with the solute charge distribution[20-21].We have used the SCRF method in our work in an attempt to find the degree and possible origins of relative stability of NH tautomer and OH tautomer in various solvent properties. In this method treats solvents as a dielectric continuum, local interactions with the solvent molecules, and particularly highly polar protic media like water. The tautomers were optimized in all solvents by utilized in the gas phase optimized geometries.

# **RESULTS AND DISCUSSION**

#### **Relative stabilities**

Structures and numbering of cycloserine is depicted in Fig. 1 and the results of energy comparisons of two tautomers in the gas phase and different solvents are given in Table 1. The predicted relative stability of NH and OH tautomers show the NH tautomer is more stable than OH tautomer in gas phase and also different solvents. The gas phase relative energy is more comparison of other solvents and the relative energies are increasing with increasing of dielectric constants of solvents at both methods of levels. The relative energy difference between OH and NH form in gas phase and other solvents were found 5-10 kcal mol<sup>-1</sup>. The order of relative stabilities are Gas > Benzene > Acetone > Methnol > water. Comparing the energies of HF with those of DFT as a whole, the former are higher side than the later, because of in which the instantaneous Columbic electron–electron repulsion is not specifically taken into account and only its average effect is included in the calculation and it is well known that the DFT (B3LYP) method adequately takes into account electron correlation contribution and/or electron lone paris.

#### **Geometric parameters**

The optimized parameters of all structures are listed in Table 2. Important aspects of molecular structure can be observed in Table 2. The N2-C1 bond length, reported in the first row of table, lies in the range of 1.38–1.36 Å in NH tautomer and N2=C1 bond length is 1.25-1.28 Å in OH tautomer for all solvents at both level of theory. The C1=O6 bond length, lies in the range of 1.18-1.22 Å in NH tautomer and C1-O6 bond length, lies in the range of 1.32-1.34 Å for all solvents. Next six rows of Table 2 consist of C2-O3, C4-O3, C4-C5, C5-N7, N2-H8 and O6-H11bond lengths.

# N. Surendra Babu

Four important vibrational frequencies of both NH and OH tautomers are listed in Table 3, for all solvents. In the first and second row, N2-H8 and C1=O6 frequencies (these frequencies only exists in tautomer NH) and Next two rows of Table 3, consists of O6-H11and C1=N2 frequencies (these frequency only exists in tautomer OH. After the stationary points were located, vibration frequencies were calculated in order to ascertain that the structures found corresponds to minima on the potential energy surface. Based on the vibrational analysis, the changes of the thermodynamic properties: Change in free energy  $\Delta G$ , change in enthalpy  $\Delta H$ , change in entropy  $\Delta S$ , as well as the equilibrium constant (K) were theoretically determined from the results of electronic, vibrational and electronic components using the HF and DFT/6-311++G (d,p) level of calculation.

# Thermodynamic properties and Equilibrium constants.

The calculated tautomeric enthalpies, Gibbs free energies, and entropies for the tautomerization process in vapor and different solvents are shown in Table 4. Thermodynamic results showed that tautomersim process is non spontaneous because of the positive value of the free energy change ( $\Delta G$ ) and therefore NH tautomer is more stable than OH tautomer. The positive value of enthalpy change ( $\Delta H$ ) indicates that the tautomersim process is endothermic process.

The tautomeric equilibrium between tautomers a and b is described as

a 
$$\frac{K_T}{k_T}$$
 b

Equilibrium constants for each species were calculated by using the following equation

(1)

$$K_{\rm T} = \exp\left(-\Delta G/RT\right) \tag{2}$$

Where  $K_T$  is the tautomeric equilibrium constant between the tautomers, the gas constant R is 1.987 x10<sup>-3</sup> kcal mol, and the temperature T is 298.15 K. The quantity  $\Delta G$  stands for the difference in the Gibbs energies of the individual tautomers. The value of the equilibrium constant K which represent the expected ratio of NH tautomer to the OH tautomer has been found to be of a value less than 10<sup>-7</sup> at room temperatures (Table 2). This indicates the predominance of the NH form of cycloserine at temperatures in all solvents. Table 4 contained the equilibrium constants ( $pK_T$ )values in different solvents .All  $pK_T$  values in gas phase and the solvents were positive and this confirmed the fact that NH tautomer is most stable.

### **Dipole movements and Molecular polarizability**

The dipole moment ( $\mu$ ) is an important tool which can be used to show the charge distribution in a molecule, and it is one of the properties often used to rationalize the structure of many chemical systems [22]. Thus, by comparing the calculated dipole moment values from table 2, for the optimized structures of the NH and OH tautomers, a strong evidence for the existence of the cycloserine molecule in the NH form rather than the OH form can be supported. The dipole movements were found different in different solvents because of the solvents has different dielectric constants and the order of dipole movements are Gas > Benzene > Acetone > Methnol > water.

We have investigated the effect of solvents on molecular polarizability of cycloserine using Gaussian 09W. In this study, the computation of molecular polarizability of cycloserine with different solvents reported. Here,  $\alpha$  is a second rank tensor property called the dipole polarizability and mean polarizability ( $\alpha$ ) are evaluated using

$$\langle \alpha \rangle = 1/3(\alpha x x + \alpha y y + \alpha z z)$$

(3)

The polarizability calculations carried out for different basis sets of cycloserine are summarized in table 4. As seen from the figure 3, polarizability was observed for different solvents, the polarizability increases with increase dielectric constant of solvents and Acetone, methanol and water the polarizability increase is small comparison of Benzene and gas. The polarizabilities of OH tautomer are higher than the NH tautomer in all solvents.

# N. Surendra Babu

# $\label{eq:table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_$

| Taut              | HF/6-311++G(d,p) |                |                            |               |                          |  |  |  |  |  |  |
|-------------------|------------------|----------------|----------------------------|---------------|--------------------------|--|--|--|--|--|--|
| omer              | Gas(ε=1)         | Benzene(ε=2.2) | Acetone( $\epsilon$ =21.0) | Methnol(e=33) | Water( $\epsilon$ =78.4) |  |  |  |  |  |  |
| NH                | -375.75745411    | -375.76524118  | -375.77468712              | -375.77527563 | -375.77587584            |  |  |  |  |  |  |
| ОН                | -375.74525708    | -375.75326384  | -375.76270330              | -375.76327686 | -375.76385923            |  |  |  |  |  |  |
| E2-E1             | 9.339364837      | 7.515851516    | 7.519917755                | 7.529298968   | 7.540493673              |  |  |  |  |  |  |
| DFT/6-311++G(d,p) |                  |                |                            |               |                          |  |  |  |  |  |  |
| NH                | -377.93062560    | -377.94153499  | -377.94637828              | -377.94692842 | -377.94748971            |  |  |  |  |  |  |
| OH                | -377.92215090    | -377.92972505  | -377.93794068              | -377.93846293 | -377.93899347            |  |  |  |  |  |  |
| E2-E1             | 5.31795476       | 7.410849544    | 5.294674157                | 5.312175397   | 5.331471314              |  |  |  |  |  |  |

 

 Table. 2: Selected molecular parameters of optimized structure of cycloserine tautomers HF and DFT(B3LYP)methods at level of 6-311++G\*\* basis set in the gas phase and in different solvents.

| HF/6-311++G(d,p) |      |      |                |      |                            |        |                          |      |                          |      |
|------------------|------|------|----------------|------|----------------------------|--------|--------------------------|------|--------------------------|------|
| Bond             | GAS  |      | Benzene(ε=2.2) |      | Acetone( $\epsilon$ =21.0) |        | Methnol( $\epsilon$ =33) |      | Water( $\epsilon$ =78.4) |      |
| length           | NH   | OH   | NH             | OH   | NH                         | OH     | NH                       | OH   | NH                       | OH   |
| C1-N2            | 1.38 | 1.25 | 1.37           | 1.25 | 1.36                       | 1.25   | 1.36                     | 1.25 | 1.36                     | 1.25 |
| C1=O6            | 1.18 | -    | 1.19           | -    | 1.19                       | -      | 1.19                     | -    | 1.19                     | -    |
| C1-O6            | -    | 1.32 | -              | 1.32 | -                          | 1.32   | -                        | 1.32 | -                        | 1.32 |
| C2-O3            | 1.39 | 1.39 | 1.39           | 1.39 | 1.39                       | 1.40   | 1.39                     | 1.40 | 1.39                     | 1.40 |
| C4-O3            | 1.41 | 1.41 | 1.41           | 1.41 | 1.42                       | 1.42   | 1.42                     | 1.42 | 1.42                     | 1.42 |
| C4-C5            | 1.53 | 1.53 | 1.53           | 1.53 | 1.53                       | 1.53   | 1.53                     | 1.53 | 1.53                     | 1.53 |
| C5-N7            | 1.44 | 1.45 | 1.44           | 1.44 | 1.44                       | 1.44   | 1.44                     | 1.44 | 1.44                     | 1.44 |
| N2-H8            | 1.00 | -    | 1.00           | -    | 1.00                       | -      | 1.00                     | -    | 1.00                     | -    |
| O6-H11           | -    | 0.95 | -              | 0.95 | -                          | 0.95   | -                        | 0.95 | -                        | 0.95 |
|                  |      |      |                | DFT/ | /6-311++(                  | G(d,p) |                          |      |                          |      |
| C1-N2            | 1.38 | 1.27 | 1.37           | 1.28 | 1.37                       | 1.28   | 1.37                     | 1.28 | 1.37                     | 1.28 |
| C1=O6            | 1.21 | -    | 1.22           | -    | 1.22                       | -      | 1.22                     | -    | 1.22                     | -    |
| C1-O6            | -    | 1.34 | -              | 1.33 | -                          | 1.34   | -                        | 1.33 | -                        | 1.33 |
| C2-O3            | 1.43 | 1.43 | 1.43           | 1.41 | 1.42                       | 1.44   | 1.42                     | 1.44 | 1.42                     | 1.44 |
| C4-O3            | 1.44 | 1.44 | 1.44           | 1.43 | 1.45                       | 1.45   | 1.45                     | 1.45 | 1.45                     | 1.45 |
| C4-C5            | 1.54 | 1.53 | 1.53           | 1.53 | 1.54                       | 1.53   | 1.54                     | 1.53 | 1.54                     | 1.53 |
| C5-N7            | 1.44 | 1.46 | 1.45           | 1.44 | 1.45                       | 1.45   | 1.45                     | 1.43 | 1.45                     | 1.45 |
| N2-H8            | 1.01 | -    | 1.01           | -    | 1.01                       | -      | 1.01                     | -    | 1.01                     | -    |
| 06-H11           | -    | 0.97 | -              | 0.98 | -                          | 0.98   | -                        | 0.98 | -                        | 0.98 |

 $Table \ 3: Selected \ frequencies \ (in \ cm^{-1}) \ of \ cycloserine \ tautomers \ HF \ and \ DFT(B3LYP) \ methods \ at \ level \ of \ 6-311++G^{**} \ basis \ set \ in \ the \ gas \ phase \ and \ in \ different \ solvents.$ 

| HF/6-311++G(d,p) |          |      |                |      |                            |                         |                          |      |                          |      |
|------------------|----------|------|----------------|------|----------------------------|-------------------------|--------------------------|------|--------------------------|------|
| Bond             | Gas(ε=1) |      | Benzene(ε=2.2) |      | Acetone( $\epsilon$ =21.0) |                         | Methnol( $\epsilon$ =33) |      | Water( $\epsilon$ =78.4) |      |
|                  | NH       | OH   | NH             | OH   | NH                         | OH                      | NH                       | OH   | NH                       | OH   |
| N2-H8            | 3839     | -    | 3833           |      | 3828                       |                         | 3829                     | -    | 3829                     | -    |
| C1=06            | 2016     | -    | 1983           |      | 1940                       |                         | 1937                     | -    | 1934                     | -    |
| O6-H11           | -        | 4107 | -              | 4088 | -                          | 4067                    | -                        | 4066 | -                        | 4065 |
| C1=N2            | -        | 1947 | -              | 1936 | -                          | 1921                    | -                        | 1920 | -                        | 1919 |
|                  |          |      |                | DFT/ | 6-311++G                   | ( <b>d</b> , <b>p</b> ) |                          |      |                          |      |
| N2-H8            | 3599     | -    | 3599           | -    | 3596                       | -                       | 3597                     | -    | 3596                     | -    |
| C1=O6            | 1813     | -    | 1772           | -    | 1751                       | -                       | 1748                     | -    | 1747                     | -    |
| O6-H11           | -        | 3685 | -              | 3660 | -                          | 3631                    | -                        | 3629 | -                        | 3629 |
| C1=N2            | -        | 1734 | -              | 1730 | -                          | 1723                    | -                        | 1723 | -                        | 1722 |

Table 4: Thermodynamic properties of change in free energy ( $\Delta G$ ), change in enthalpy ( $\Delta H$ ),(K cal/mol) and change in entropy ( $\Delta S$ ) (cal/mol) of cycloserine tautomers for HF and DFT(B3LYP) methods at level of 6-311++G\*\* basis set in the gas phase and in different solvents.

| Solvent  | HF         |            |            |             | DFT        |       |            |             |
|----------|------------|------------|------------|-------------|------------|-------|------------|-------------|
|          | $\Delta H$ | $\Delta G$ | $\Delta S$ | $p^{K}_{T}$ | $\Delta H$ | ΔG    | $\Delta S$ | $p^{K}_{T}$ |
| Gas      | 7.769      | 8.010      | -0.811     | 6.41        | 5.363      | 5.735 | -1.257     | 4.59        |
| Bemzene  | 7.544      | 7.587      | -0.145     | 6.07        | 7.50       | 7.834 | -1.118     | 6.27        |
| Acetone  | 7.496      | 7.471      | 0.082      | 5.98        | 5.223      | 5.444 | -0.737     | 4.36        |
| Methanol | 7.506      | 7.492      | 0.046      | 5.99        | 5.233      | 5.451 | -0.727     | 4.36        |
| Water    | 7.517      | 8.018      | 0.016      | 6.42        | 5.247      | 5.457 | -0.707     | 4.37        |

Available online at www.scholarsresearchlibrary.com

### Table.5: Calculated dipole moments (Debye) of cycloserine tautomers for HF and DFT(B3LYP) methods at level of 6-311++G\*\* basis set in the gas phase and in different solvents.

| HF/6-311++G(d,p) |                   |                |                            |                          |                          |  |  |  |  |  |
|------------------|-------------------|----------------|----------------------------|--------------------------|--------------------------|--|--|--|--|--|
| Tautomer         | $Gas(\epsilon=1)$ | Benzene(ε=2.2) | Acetone( $\epsilon$ =21.0) | Methnol( $\epsilon$ =33) | Water( $\epsilon$ =78.4) |  |  |  |  |  |
| NH               | 3.9147            | 4.5328         | 5.3289                     | 5.3813                   | 5.4344                   |  |  |  |  |  |
| OH               | 6.2198            | 6.9200         | 7.7422                     | 7.7923                   | 7.8438                   |  |  |  |  |  |
|                  | DFT/6-311++G(d,p) |                |                            |                          |                          |  |  |  |  |  |
| NH               | 3.6769            | 1.9160         | 5.2243                     | 5.2843                   | 5.3421                   |  |  |  |  |  |
| OH               | 6.0501            | 6.8096         | 7.7162                     | 7.7923                   | 7.8250                   |  |  |  |  |  |

Table.6: Polarizabilities of cycloserine tautomers for HF and DFT(B3LYP) methods at level of 6-311++G\*\* basis set in the gas phase and in different solvents.

| HF/6-311G(d,p) |          |               |               |               |               |               |               |         |  |
|----------------|----------|---------------|---------------|---------------|---------------|---------------|---------------|---------|--|
| Solvent        | Tautomer | $\alpha_{XX}$ | $\alpha_{XY}$ | $\alpha_{YY}$ | $\alpha_{XZ}$ | $\alpha_{YZ}$ | $\alpha_{ZZ}$ | <a></a> |  |
| Gas            | NH       | 53.272        | -1.023        | 58.146        | -0.627        | -0.052        | 41.170        | 50.863  |  |
|                | OH       | 59.918        | 0.392         | 53.142        | 1.247         | 0.534         | 41.359        | 51.473  |  |
| Benzene        | NH       | 58.571        | -1.735        | 64.279        | -0.882        | -0.043        | 45.143        | 55.998  |  |
|                | OH       | 66.719        | 0.545         | 58.416        | 1.509         | 0.677         | 45.358        | 56.831  |  |
| Acetone        | NH       | 64.914        | -2.898        | 71.684        | -1.223        | -0.012        | 51.041        | 62.546  |  |
|                | OH       | 74.873        | 0.791         | 64.888        | 1.826         | 0.913         | 51.373        | 63.711  |  |
| Methnol        | NH       | 65.319        | -2.998        | 72.129        | -1.246        | -0.013        | 51.452        | 62.967  |  |
|                | OH       | 75.372        | 0.808         | 65.293        | 1.845         | 0.930         | 51.796        | 64.154  |  |
| Water          | NH       | 65.716        | -3.083        | 72.598        | -1.268        | -0.010        | 51.878        | 63.397  |  |
|                | OH       | 75.880        | 0.828         | 65.703        | 1.866         | 0.950         | 52.230        | 64.604  |  |
|                |          |               | DFT/6         | 5-311G(d,     | p)            |               |               |         |  |
| Gas            | NH       | 63.059        | -1.715        | 65.829        | -1.058        | 0.466         | 46.091        | 58.326  |  |
|                | OH       | 68.157        | -0.382        | 61.650        | 1.143         | 0.193         | 46.026        | 58.611  |  |
| Benzene        | NH       | 72.088        | 2.788         | 72.139        | 1.603         | 0.066         | 50.366        | 64.864  |  |
|                | OH       | 76.706        | -0.449        | 68.294        | 1.398         | 0.355         | 50.641        | 65.214  |  |
| Acetone        | NH       | 79.211        | -4.970        | 82.980        | -1.989        | 0.568         | 57.680        | 73.290  |  |
|                | OH       | 87.253        | -0.454        | 76.623        | 1.709         | 0.612         | 57.743        | 73.873  |  |
| Methnol        | NH       | 79.773        | -5.126        | 83.578        | -2.023        | 0.574         | 58.178        | 73.843  |  |
|                | OH       | 87.910        | -0.451        | 77.151        | 1.728         | 0.630         | 58.250        | 74.437  |  |
| Water          | NH       | 80.343        | -5.275        | 84.201        | -2.058        | 0.578         | 58.694        | 74.413  |  |
|                | OH       | 88.580        | -0.443        | 77.684        | 1.748         | 0.653         | 58.774        | 75.013  |  |



NH Tautomer

Fig 1. Geometry of the cycloserine optimized tautomers at B3LYP/6-31++G(d, p) in gas phase.



Figure 2. Polarizabilities of cycloserine tautomers for HF and DFT(B3LYP) methods at level of 6-311++G\*\* basis set in the gas phase and in different solvents.

#### CONCLUSION

In this work, HF and DFT calculation has been applied to study of tautomerism in cycloserine in the gas phase and four solvents. The following points emerge from the present study: 1. The relative energy difference between OH and NH form in gas phase and other solvents were found 5-10 kcal mol<sup>-1</sup>. The order of relative stabilities are Gas > Benzene > Acetone > Methnol > water. 2. In the solution and with increase of polarity; NH isomers were more stable. With increase of polarity total energy of all compounds were more negative. 3. All  $pK_T$  values in gas phase and the solvents were positive and this confirmed the fact that NH tautomer is most stable. 4. The dipole moments of all compounds are affected by solvent with increase of the polarity of solvents the dipole moments of OH and NH tautomers were increased. 5. The polarizability of all compounds are affected by solvent, with increase of the polarity of solvents the polarizability of OH and NH tautomers were increased.

#### Acknowledgements

Thanks are gratefully extended to the Department of chemistry, Hawassa University, for its valuable help to this work.

# REFERENCES

[1] H.A. El-Obeid, A.A Al-Badr, Analytical Profile of D-Cycloserine in *Analytical Profiles of Drug Substances*, Academic Press, New York, **1989**; Vol. 18, pp. 567.

[2] J.G Hardman. Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., McGraw-Hill, New York, NY, **1995**; pp. 1164.

[3] E.A. Raleigh. Selected Topics from Classical Bacterial Genetics in *Short Protocols in Molecular Biology*, 4th Ed., John Wiley & Sons, Inc., New York, **1999**; Unit 1.4, p. 1-9.

[4] F.C. Neuhaus, in: D. Gottlieb, P.D. Shaw (Eds.), Antibiotics I, Mechanism of Action, Springer, Verlag, New York, **1967**, pp. 40–83.

[5] S. David, J. Antimicrob. Chemother. 47 (2001) 203.

[6] Y.G. Kim, Y.J. Lee, E.D. Lee, S.D. Lee, J.W. Kwon, W.B. Kim, C.-K. Shim, M.G. Lee, *Int. J. Clin. Pharmacol. Ther.* 38 (2000) 461.

- [7] S. Chung, M.S. Johnson, A.M. Gronenborn, Epilepsia, 25 (1984) 353-362.
- [8] G.T. Olson, M. Fu, S. Lau, K.L. Rinehart, R.B. Silverman, J. Am. Chem. Soc. 120 (1998) 2256.
- [9] K.S. Sundaram, M. Lev, J. Neurochem. 42 (1984) 577.
- [10] P.C. Hariharan, J.A. Pople, *Theor. Chim. Acta* 28 (1973) 213.
- [11] A. D. Becke, J. Chem. Phys. 98 (1993) 5648.
- [12] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785.
- [13] B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157 (1989) 200.
- [14] W. Kohn, L. J. Sham, Phys. Rev. 140 (1965) A1133.
- [15] M. J. Frisch, G.W. Trucks, H. B. Schlegel, et al., Gaussian 09, Rev. A.1 (Gaussian, Inc., Wallingford CT, (2009).

[16] A. Frisch, H. P. Hratchian, R. D. Dennington II, et al., Gaussview, Ver. 5.0 (Gaussian, Inc., Wallingford CT, (2009).

[17] J.Tomasi, M.Persico, Chem. Rev. 94(1994) 2027.

[18] C.J.Cramer, D.G.Truhlar, in: K.B.Lipkowitz.D.B.Boyd(EDs.), Reviews in Computational Chemistry, vol. 6, VCH, New York, **1915** (chap.I).

- [19] P.Politzer, J.S.Murray(EDs.), Quantitave Treatment of solute/solvent Interactions, Elsevier, Amsterdam, 1984.
- [20] M.W.Wong`,K.B.Wiberg,M.J.Frisch,J.Am.Chem.Soc.114(1992)523.
- [21] K.B. Wiberg, T.A.Keith, M.J.Frisch, M.Murcko, J. Phys. Chem. 99(1995)9072.
- [22] A.Chatterjee, T. Balaji, H.Matsunaga, F.Mizukami, J.Mol. Graph Model, 25, (2006), 208.