Available online at www.scholarsresearchlibrary.com

Scholars Research Library

Archives of Physics Research, 2014, 5 (4):22-29 (http://scholarsresearchlibrary.com/archive.html)

Spectroscopic properties of Er³⁺ doped HMO glasses

M. Kiran Kumar^{1,3}, Y.N. Ch. Ravi Babu², M. Parandamaiah³ and ^{*}A. Suresh Kumar¹

¹University Science Instrumentation Centre, S.V. University, Tirupati, India ²The Hindu college, Machalipatnam, A.P, India. ³Besant Theosophical College, Madanapalle, A.P, India.

ABSTRACT

The spectroscopic properties of Er^{3+} : PbO - ZnO - CaO - Al₂O₃- B₂O₃ glasses have been studied. Racah coefficients $(E^{1}, E^{2} \text{ and } E^{3})$, Slater Condon parameters $(F_{2}, F_{4} \text{ and } F_{6})$, Spin orbit coupling parameters (ξ_{4f}) , Configuration interaction parameters (α and β) have been calculated by using the absorption spectra. The ratios of E_{1}/E_{3} and E_{2}/E_{3} do not deviate much from the hydrogenic ratios. In the present work we have studied nephalauxetic effect, covalency and bonding parameters for Er^{3+} glass systems. The phenomenological Judd-Ofelt intensity parameters Ω_{2} , Ω_{4} and Ω_{6} were determined from the spectral intensities. The radiative transitions probabilities A, radiative life times (τ_{R}), branching ratios (β_{R}) and absorption cross sections (σ_{a}) were evaluated for the lasing levels of certain exited states.

Key words: Erbium, HMO glasses, Optical absorption, XRD, FT-IR.

INTRODUCTION

Over the past several years, rare earth (RE)-doped materials have been considered as key and technologically important components due to their applications in various fields such as color display, solid- state laser, Optical amplifiers Photo electronic devices [1-4]. Lanthanide ions are the suitable candidates for the luminescence processes owing to their abundant energy levels [4]. Especially Er^{3+} ion possesses rich radiative transitions from violet to mid-infrared (3.45µm) region and its key role as the active dopant for the optical amplification and NIR light source at 1.53 µm wavelength, the standard fiber telecommunication wavelength [5-7].

Further it is well known that optical fibers are more easily fabricated to utilize the glass compared to crystals. It is observed from the Silica, Tellurite and fluoride glasses employed as a potential host for 1.53 μ m optical fiber amplifiers [3, 8, 9]. Unfortunately, some disadvantages based on silica-based Er³⁺ doped fiber amplifier (EDFA) restrict their further wide applications in optical communication such as low-doped concentration, narrow amplification bandwidth (~35nm), non-uniform gain spectrum, etc. [10,11]. Moreover, by considering the poor chemical durability of fluoride glasses and the poor stability against devitrification of tellurite glasses, it is considered to be more important to search for novel glass systems to be used as host materials in order to overcome these disadvantages and realize high efficiency and broadband operation in EDFA.

Recent decades have witnessed an increasing interest in heavy metal oxide glasses based on PbO - ZnO - CaO- Al_2O_3 - B_2O_3 system both in fundamental research and in optical device fabrication because of their good transparency in the mid-infrared (up to ~8 µm) region the lowest phonon energy (~550 cm⁻¹), high refractive index

(~2.3) [6,12-14]. These special properties make them become more attractive class of materials for photonics and optical communication network. The main objective of this work is to carry out a study on the spectroscopic properties of Er^{3+} doped PbO - ZnO - CaO- Al₂O₃- B₂O₃ glasses. Effects of variation in host environment on the optical properties of Er^{3+} doped BZCAP glasses have been investigated and discussed.

MATERIALS AND METHODS

The multi component BZCAP 1- 5 glass systems with the molar compositions of (50-x) PbO – x CaO - $4Al_2O_3$ – $45ZnO.B_2O_3$ – $1Er_2O_3$ (where x=10, 20, 30 and 40mol%) were prepared using Melt quenching technique [15].

The ingredients of the glasses were weighed to get 10g for each sample and mixed and uniformly grinded thoroughly in an agate mortar till the uniformly mixed fine powder is obtained. The raw mixed materials were placed in a porcelain crucible container and transferred to a high temperature furnace for melting. The temperature of the furnace is kept at 40° C for about half an hour initially and slowly raised to reach 1050 $^{\circ}$ C for melting for about one hour. The melt was quenched quickly by pouring on a smooth pre heated brass plate. The optically transparent glasses thus obtained were subjected to annealing at about 400 $^{\circ}$ C to remove internal stresses, which were verified by examination through a polarizing microscope (Rudolph Instruments). The X-ray diffraction studies of these glass systems also indicated its amorphous nature [16].

The refractive indices 'n' of the samples were determined using conventional methods [17]. The absorption spectra were recorded at room temperature in UV–Vis and NIR region on JASCOUV–vis–NIRV–670 spectrophotometer. The X-ray diffraction (XRD) measurements were performed using Bruker D8 Advance diffracto meter (K α ¹/41.54A1) at 40 kV and 100 mA, at room temperature. Fourier Transform Infrared (FTIR) analyses were carried out using PerkinElmer Paragon 500 FTIR spectrophotometer in the wave number range 400–4000 cm⁻¹ using KBr pellet technique.

RESULTS AND DISCUSSION:

1. Structure analysis

The XRD profile of the glasses namely BZCAP 1-5 glasses were given in Fig1.

Fig-1: XRD pattern of Er³⁺ : BZCAP 1 glass

The observed broad hump is the signature of the characteristic feature of amorphous nature of the material under study. The FTIR Transmission spectra in the range of 1800 to 400 cm-1 in fig 2 along with their assignments are given in table 1.

Table -1: Assignments of FT IR in Er³⁺: BZCAP1-5 glasses

Wave number (cm ⁻¹)	FT- IR assignment
476, 491	stretching vibration in PbO ₄ [2], B-O-B and Pb-O-B bending vibration as well as borate ring deformation
693	Bending of B-O-B linkage
1014	stretching of B-O bond stretching of tetrahedral BO ₄ units
1405	B-O stretching vibrations of BO ₃ units in chain and ring type Meta borate groups [2]
1632	Bending modes of OH groups [2]

The various physical properties of Er^{3+} BZCAP 1-5 glasses are calculated from the conventional formulae using experimental data and are given in table-2.

Parameter	BZCAP1	BZCAP2	BZCAP3	BZCAP4	BZCAP5
Refractive index, n	1.740	1.741	1.743	1.744	1.746
Density d (gm/cm ³)	3.970	4.054	4.092	4.212	4.306
Optical path length(cm)	0.280	0.257	0.292	0.268	0.290
Er^{3+} ion concentration (10 ²⁰ ions /ml)	0.205	0.972	1.954	2.991	3.757
Optical dielectric constant, ɛ	3.028	3.031	3.038	3.042	3.049
Reflection loss R (%)	7.294	7.308	7.337	7.352	7.380
Molar refractivity Rµ (cm ³)	20.683	18.451	20.508	20.148	19.949
Inter-ionic distance η (Å)	36.536	21.749	17.232	14.952	13.858
Poloron radius $r_P(Å)$	14.724	8.765	6.944	6.026	5.585
Field strength F $(10^{+15} \text{ cm}^{-2})$	0.598	1.687	2.688	3.569	4.155
Electric susceptibility χ	0.1613	0.1616	0.1621	0.1624	0.1630
Numerical aperture (NA)	0.25	0.25	0.25	0.25	0.25

Table - 2: Various Physical properties of Er³⁺ : BZCAP1-5 glasses

2. Absorption Spectra

The absorption spectrum of BZCAP 1-5 glass samples are recorded in the wavelength range of 400-1600 nm are shown in fig 3(a) & 3(b). The absorption peaks corresponding to the transitions from the ground state ${}^{4}I_{15/2}$ to the various excited states are marked in the spectra. Due to the strong absorption by the host glasses in the UV range, the absorption bands below 420 nm could not be distinguished. The experimental oscillator strength (f_{expt}) for the following absorption bands Er^{3+} : ${}^{4}I_{13/2}$, ${}^{4}I_{11/2}$, ${}^{4}F_{9/2}$, ${}^{4}S_{3/2}$, ${}^{2}H_{11/2}$, ${}^{4}F_{5/2}$ are determined with known values of Er^{3+} ion concentration (in mol%), sample thickness(t), peak positions and peak areas by using the following equation.

 $f_{exp} = 4.32 X 10^{-9} \int \mathcal{E}(v) \Delta v \qquad \rightarrow (1)$

The Judd-Ofelt intensity parameter $\Omega\lambda$ (λ =2,4,6) [18,19] have been determined by using the experimentally measured oscillator strengths following least square fitting [20] procedure. The experimental (f_{expt}) and caculated (f_{cal}) oscillator strengths of the observed bands are given in table-3.

Fig-3(a): Optical absorption spectra of Er³⁺ : BZCAP 1-5 glasses

Fig-3(b): Optical absorption spectra of Er³⁺ : BZCAP 1-5 glasses

Table 3: Experimental and calculated band intensities (f x 10^6) and rms deviation of Er^{3+} : BZCAP1-5 glasses

	BZCAP1		BZCAP2		BZC	CAP3	BZC	CAP4	BZCAP5	
Level	f _{expt}	f_{calc}								
${}^{4}I_{13/2}$	0.984	0.988	1.481	1.332	0.936	0.912	0.952	0.917	0.592	0.618
${}^{4}I_{11/2}$	0.547	0.488	0.524	0.635	0.481	0.422	0.405	0.426	0.444	0.304
${}^{4}I_{9/2}$	0.351	0.395	0.335	0.174	0.319	0.291	0.319	0.280	0.287	0.289
${}^{4}F_{9/2}$	2.074	2.044	1.531	1.528	1.659	1.643	1.627	1.613	1.451	1.426
${}^{4}S_{3/2}$	0.319	0.339	0.234	0.534	0.255	0.335	0.351	0.339	0.287	0.205
${}^{2}H_{11/2}$	8.709	8.713	5.754	5.758	5.327	5.334	5.321	5.323	5.892	5.900
${}^{4}F_{7/2}$	1.568	1.606	1.223	1.907	1.276	1.449	1.223	1.448	1.010	1.041
${}^{4}F_{5/2}$	0.319	0.414	0.255	0.651	0.234	0.409	0.351	0.414	0.191	0.249
rms dev.	±0.040		±0.265		±0.081		±0.	073	±0.054	

The rms deviation (δ) for the f_{expt} and f_{cal} is calculated by using the following equation

$$(\delta \text{ rms}) = \left[\sum (f_{\text{cal}} - f_{\text{expt}})^2 / \sum f^2_{\text{expt}}\right]^{1/2} \longrightarrow (2)$$

Where summation is taken over the bands used to calculate Ω_{λ} parameters. The low values obtained for δ rms indicate the good fitting procedure employes in the present study. Jorgensen and Reisfeld [21] have noted that Ω_2 parameter is indicative of covalent bonding, while Ω_6 parameter is related to the rigidity of the host [22]. In the present study Ω_2 is related with the symmetry of the glass while Ω_6 is inversely proportional to the covalency of Er -O bond. The covalency of the Er - O bond is assumed to be related with the local basicity around the RE sites, which can be adjusted by the composition or structure of the glass host [23].

The Judd-Ofelt parameters obtained for BZCAP 1-5 glasses are given in table 4. The BZCAP 1 glass exhibits higher magnitude of Ω_2 which indicate more asymmetry of the ligand field near the rare earth ion. This characteristic can be attributed to the presence of Pb ion with higher concentration it appears from the table 3 Ω_2 parameter Ω_6 parameter exhibit higher and lower magnitudes in all the glasses except BZCAP 2 glass. The rigidity of the host dependent Ω_6 parameter exhibits more value in BZCAP 2 glass reflects higher magnitudes of rigidity over the other glasses. The J-O parameters, which contain implicity the effect of the odd-symmetry crystal field terms, exhibit the influence of the host on the radiative transition probabilities. It has been observed that the Ω_2 parameter is related to the asymmetry of the ligand field near the RE ions, i.e higher the asymmetry, the larger is Ω_2 [24]. The variation of PbO concentration with intensity parameters as shown in fig 4. The (SQF) quality factor Ω_4 , Ω_6 obtained 0.554 for BZCAP 2 glasses recommend a good candidature for laser action [25].

Fig-4: Variation of J-O parameters & Quality factor with concentration variation

Table 4: Judd Ofelt intensity parameters (Ω_{λ} , (λ = 2,4,6) x 10⁻²⁰ cm²) of Er³⁺: BZCAP1-5 glasses

Glass/ Parameter	BZCAP1	BZCAP2	BZCAP3	BZCAP4	BZCAP5
Ω_2	5.313	3.970	3.638	3.950	4.900
Ω_4	1.802	0.801	1.538	1.611	1.833
Ω_6	0.850	1.446	0.985	1.081	0.710
Ω_4 / Ω_6	2.120	0.554	1.562	1.491	2.583
$\Omega_2+\Omega_4+\Omega_6$	7.965	6.217	6.160	6.642	7.443

The J-O intensity parameters presented in table-3 are used to estimate the radiative transition probabilities (A_R) from excited (ΨJ) to particular lower state ($\Psi'J'$) manifolds using the following equations

$$A_R(JJ') = \frac{64\pi^4 \nu^3}{3h(2J+1)} \left(\frac{n(n^2+2)^2}{9} S_{ed} + n^3 S_{md}\right) \longrightarrow (3)$$

Where S_{ed} and S_{md} are electric and magnetic dipole line strength respectively. The total radiative transition probability (A_T) of an excited state is given by the sum of the A_R (ΨJ ; $\Psi'J'$) terms calculated over all the terminal states and is related to radiative life time (τ_R) as

$$\frac{1}{\tau_R} = A_T(\Psi J) = \sum A_R(\Psi J; \Psi J') \quad \longrightarrow \tag{4}$$

And branching ratio is given by

$${}^{\beta}{}_{R}(\Psi J; \Psi' J') = \frac{A_{R}(\Psi J; \Psi' J')}{A_{T}(\Psi J)} \longrightarrow$$
(5)

According to J-O theory [18,19] the radiative lifetime τ_R is inversely proportional to the refractive index 'n'. The value of 'n' monotonically increases with increasing CaO (see table 4), so the value of τ_R decreases with the increase of CaO content.

3. Radiative and non-radiative transition rates

Using J-O intensity parameter Ω_{λ} determined from the measured oscillator strengths of the absorption bands, the radiative lifetime τ_{R} and branching ratios β_{R} for certain excited levels have been calculated using eqs 4 & 5 [26] and are listed in table-5. The trend of τ_{R} for the excited levels in all the five glasses are found to increase in order

$${}^{4}I_{13/2} \rightarrow {}^{4}I_{11/2} \rightarrow {}^{4}I_{9/2} \rightarrow {}^{4}F_{9/2} \rightarrow {}^{4}S_{3/2} \rightarrow {}^{2}H_{11/2} \rightarrow {}^{4}F_{7/2} \rightarrow {}^{4}F_{5/2}$$

Table-5: Computed Radiative lifetimes τ_R (in μ sec) and Branching ratios (β) of certain lasing transitions of Er³⁺: BZCAP 1-5 glasses

SLJ	S'L'J'	BZCAP1		BZCAP2		BZCAP3		BZ	CAP4	BZCAP5		
		τ_{R}	β	$ au_{ m R}$	β	$\tau_{\rm R}$	β	τ_{R}	В	$ au_{R}$	β	
${}^{4}F_{3/2}$	${}^{4}I_{15/2}$	45175	0.01	45424	0.01	40198	0.01	38797	0.01	36474	0.01	
	${}^{4}\mathbf{I}_{13/2}$	2149	0.13	2161	0.10	1913	0.11	1846	0.10	1735	0.10	
	${}^{4}I_{11/2}$	404	0.57	379	0.52	336	0.52	323	0.52	302	0.51	
	${}^{4}I_{9/2}$	283	0.30	238	0.37	211	0.37	203	0.37	188	0.38	

Similar trends have been observed for various other Er^{3+} doped glasses [27,28]. The electric dipole line strength (S_{ed}) and magnetic dipole line strength (S_{md}) for these band is related to the J-O parameters by the following eqs

The electric dipole line strength (S_{ed}) is given by

$$S_{ed}(JJ') = e^2 \Sigma \Omega_{\lambda} (\Psi J \| U^{\lambda} \| \Psi' J') \longrightarrow (6)$$

The magnetic dipole line strength (S_{md}) is given by

$$S_{md}(JJ') = \left(\frac{e\mathfrak{h}}{4\pi mc}\right)^2 (\Psi J \| L + 2S \| \Psi' J')^2 \quad \longrightarrow \quad (7)$$

Table-6 shows that the values of $\Delta \lambda_{eff}$ of all the BZCAP 1-5 glasses. A large stimulated emission cross- section is related with low threshold and high gain amplifier applications. The stimulated emission cross- section can be calculated by the following eq

$$\sigma_{e=} \frac{\lambda_{P}^{*}}{8\pi cn^{2}} A(a_{j}, b_{j}) \longrightarrow (8)$$

 $\label{eq:constraint} \begin{array}{l} \mbox{Table -6: Emission peak wavelengths (λ_{P}, nm), effective line widths $(\Delta \lambda_{eff}, nm)$ and stimulated emission cross sections $(\sigma_{e}, x10^{-20} cm^{2})$ of Er^{3+}: BZCAP 1-5$ glasses $(\sigma_{e}, x10^{-20} cm^{2})$ of Er^{2+} and $(\sigma_{e}, x10^{-20} cm^{2})$ of Er^{2+}: BZCAP 1-5$ glasses $(\sigma_{e}, x10^{-20} cm^{2})$ of $(\sigma_{e}, x10^{-20} cm^{2})$ of Er^{2+}: BZCAP 1-5$ glasses $(\sigma_{e}, x10^{-20} cm^{2})$ of $(\sigma_{e}, x$

Level		BZ	ZCAP1		BZCAP2			BZCAP3			BZCAP4			BZCAP5	
${}^{4}\mathrm{F}_{3/2} \rightarrow$	$\lambda_{\mathbf{P}}$	$\Delta \lambda_{eff}$	σ	$\lambda_{\mathbf{P}}$	$\Delta \lambda_{eff}$	σ	$\lambda_{\mathbf{P}}$	$\Delta \lambda_{eff}$	σ	$\lambda_{\mathbf{P}}$	$\Delta \lambda_{eff}$	σ	$\lambda_{\mathbf{P}}$	$\Delta \lambda_{eff}$	σ
${}^{4}I_{13/2}$	1334	51.14	1.20	1331	54.44	1.11	1328	59.24	1.14	1331	56.57	1.25	1330	52.79	1.42
${}^{4}I_{11/2}$	1060	5.69	19.51	1063	8.86	13.73	1065	13.17	10.45	1060	33.59	4.18	1065	25.67	5.96
${}^{4}\mathbf{I}_{9/2}$	900	56.10	0.55	904	54.442	0.84	904	54.30	0.94	907	45.08	1.21	909	41.24	1.45

The values of σe is dependent on the composition of the glasses considering into account the relation between the radiative lifetime τ_R and the refractive index [29], the σe increases with the magnetic transition. From Eqs 8 it is observed that σe is directly proportional to the spontaneous emission probability, A_T and inversely proportional to the effective band width, $\Delta \lambda_{eff}$. It has been reported by Becker [30] that the refractive index increases with an increase CaO content. In the present work, the increase in the value of n (table-2) and A_T (table-7) decreases in $\Delta \lambda_{eff}$ satisfies Eqs 8 which provides large σe

Table-7: Electric dipole line strengths (S'_{ed} cm² (x10⁻²²) and radiative transition probabilities A (s⁻¹) of certain lasing transitions of Er³⁺: BZCAP1-5 glasses

Tran	sition	BZ	CAP1	BZ	CAP2	BZ	CAP3	BZ	CAP4	BZCAP5		
² H _{9/2}		S'ed	A	S'ed	A	S'ed	A	S'ed	A	S'ed	A	
	${}^{2}H_{9/2}$	214	5	202	5	169	4	184	5	194	5	
	${}^{4}F_{3/2}$	16	4	12	3	15	3	16	4	16	4	
	${}^{4}F_{5/2}$	15	4	14	4	15	4	16	5	14	4	
	${}^{4}F_{7/2}$	115	82	75	53	86	61	92	66	110	78	
	${}_{2}H_{11/2}$	27	29	17	18	24	26	25	28	26	29	
${}^{4}G_{11/2}$	${}_{4}S_{3/2}$	14	25	7	12	12	21	13	22	15	25	
	${}^{4}F_{9/2}$	213	906	156	661	148	630	161	683	198	841	
	${}^{4}I_{9/2}$	60	493	45	368	42	341	45	370	56	455	
	${}^{4}I_{11/2}$	8	102	8	98	8	99	9	106	8	96	
	${}^{4}I_{13/2}$	123	2775	99	2228	103	2319	110	2490	116	2618	
	${}^{4}I_{15/2}$	589	31194	421	22307	424	22449	457	24220	551	29197	
	${}^{4}F_{3/2}$	5	0	7	0	5	0	6	0	4	0	
	${}^{4}F_{5/2}$	36	2	27	2	30	2	32	2	34	2	
	${}^{4}F_{7/2}$	7	2	6	1	6	1	6	2	6	2	
	${}^{2}\text{H}_{11/2}$	55	27	35	17	45	22	48	23	53	26	
² H	${}^{4}S_{3/2}$	4	4	2	2	3	3	4	3	4	4	
1 19/2	${}^{4}F_{9/2}$	45	126	38	108	33	94	36	102	41	115	
	${}^{4}I_{9/2}$	1	6	1	6	1	5	1	6	1	5	
	${}^{4}I_{11/2}$	101	995	76	750	78	773	84	832	95	936	
	${}^{4}I_{13/2}$	94	1830	92	1803	82	1599	89	1731	86	1675	
	${}^{4}I_{15/2}$	22	1095	34	1673	25	1222	27	1336	19	942	
	${}^{4}F_{7/2}$	59	1	48	1	45	1	49	1	55	1	
	${}^{2}H_{11/2}$	27	3	32	3	28	3	30	3	25	3	
	${}^{4}S_{3/2}$	7	2	5	1	5	2	6	2	7	2	
417	${}^{4}F_{9/2}$	78	137	77	136	77	135	83	145	73	129	
r _{5/2}	${}^{4}I_{9/2}$	22	109	20	98	20	98	21	105	21	102	
	${}^{4}I_{11/2}$	25	226	14	123	22	198	23	209	25	227	
	${}^{4}I_{13/2}$	61	1238	64	1289	61	1236	66	1329	57	1153	
	${}^{4}I_{15/2}$	19	1122	32	1910	22	1300	24	1428	16	937	
	${}^{4}F_{9/2}$	3	1	5	1	4	1	4	1	3	1	
	${}^{4}I_{9/2}$	34	55	41	66	36	57	38	62	31	50	
${}^{4}S_{3/2}$	${}^{4}I_{11/2}$	8	31	12	50	9	35	10	39	6	26	
	${}^{4}I_{13/2}$	29	374	50	637	34	434	37	476	24	313	
	${}^{4}I_{15/2}$	19	953	33	1622	22	1104	24	1212	16	796	
	${}^{4}I_{9/2}$	55	3	41	2	38	2	41	2	51	3	
4	${}^{4}I_{11/2}$	102	35	171	58	117	40	128	44	85	29	
[•] F _{9/2}	${}^{4}I_{13/2}$	37	72	24	46	32	63	34	66	37	71	
	$4I_{15/2}$	131	1457	107	1195	123	1376	132	1467	126	1403	
	${}^{4}I_{11/2}$	30	1	27	1	29	1	31	1	28	1	
4Io2	${}^{4}I_{13/2}$	66	42	108	69	75	48	82	53	55	35	
112	${}^{4}I_{15/2}$	38	241	19	118	33	208	35	219	38	243	
4-	${}^{4}I_{13/2}$	95	13	140	19	103	14	113	15	82	11	
${}^{*}I_{11/2}$	${}^{4}I_{150}$	60	182	85	255	64	192	69	209	53	159	
${}^{4}I_{13/2}$	${}^{4}I_{15/2}$	153	105	224	154	166	114	181	125	133	91	

One of most important parameters influencing the laser performance of a material is the emission cross- section. When emission transition bridges the first excited multiplet it can be conveniently evaluated by reciprocity method which relates absorption cross-section and emission cross-section. To assess the emission cross-section for transition ending on the excited multiplets the Fuchtbauer- Laden-burg method is commonly used [31].

FTIR Spectral Analysis

Vibrational Spectra of lead calcium zinc borate glasses (BZCAP 1-5) are shown in fig-2. The present work explains about the weak peak at 476,491 cm-1 is due to the stretching vibration in Pbo4, B-O-B and Pb-O-B bending vibration as well as borate ring deformation of Pb^{2+} ions in the glasses. All these Assignments agree well with the literature values [32-35]. The peaks of FTIR spectra are presented in table-1.

CONCLUSION

A novel multi component Erbium doped lead borate glasses were developed by compositionally varying the constituent heavy metal oxides PbO and CaO. The measured oscillator strengths (f) have been studied within the

frame work of J-O theory to determine the J-O parameters Ω_2 , Ω_4 and Ω_6 . The large Ω_2 values (table-4) are probably due to the covalent nature of the lead borate glasses. Using the J-O parameters the total radiative transition rates, radiative lifetimes, branching ratios have been theoretically calculated for all the excited states. The inter electronic repulsion parameter ratios E1/E3 and E2/E3 observed in all the compositionally varied glasses do not deviate much from the hydrogenic ratios and indicate that the radial properties (radial distribution function) of all these glasses are similar. The higher values obtained for Ω_2 in all glasses indicate that the Er³⁺ ion is subjected to higher covalency with low asymmetry. From our analysis it is suggested that the BZCAP 2 glass is a good lasing candidature among all the other glasses.

REFERENCES

[1] A.S. Gouvria-Neto. L.A. Bueno, R.F. do Nascimento, E.A. da Silva Jr., E.B. da Costa, Appl. Phys. Lett. 91 (2007) 091114.

[2] Q.Y. Zhang, X.Y. Huang, Prog. Mater. Sci. 55 (2010) 353.

[3] J.L. Adam, Chem. Rev. 102 (2002) 2461.

[4] D.Q. Chen, Y.S. Wang, Appl. Phys. Lett. 91 (2007) 251903.

[5] J.Z.Wang, X. Yan, S. Yi, Appl. Phys. Lett. 91 (2007)191115.

- [6] D.M. Shi, Q.Y. Zhang, J. Appl. Phys. 104 (2008) 123517.
- [7] B.J. Chen, G.C. Righini, M. Bettinelli, A.Speghini, J. Non-Cryst. Solids 322 (2003) 319.

[8] B.F. Aull, H.P. Jenssen, IEEE J. Quantum Electron. QE-18 (5) (1982) 925.

- [9] M. Wachtler, A. Speghini, K. Gatterer, H.P. Fritzer, D. Ajo, M.J. Bettinelli, J.Am. Ceram. Soc. 81 (1998) 2045.
- [10] W.J. Miniscalco, J.Lightwave Technol. 9 (1991) 234.

[11] S. Tanabe, J. Non-Cryst. Solids 259 (1999) 1.

[12] W.H. Huang, C.S. Ray, D.E. Day, J. Am. Ceram. Soc. 77 (1994) 1017.

[13] A.A. Kharlamov, R.M. Almeida, J.Heo, J. Non-Cryst. Solids 202 (1996) 233. Y.J. Ohishi, J. Appl. Phys. 96 (2004) 7212.

[14] H. Yamauchi, G.S. Muguran, Y.J. Ohishi, J. Appl. Phys. 96 (2004) 7212.

[15] S.V.J. Lakshman, A. Suresh Kumar, J. Phys. Chem. Solids 49 (1988) 133.

[16] Atul D. Sontakke, Kaushik Biswas, Anal Tarafder, R. Sen, K. Annapurna, Opt. Mater. Express 3 (2011) 346.

[17] A.S. Korotkov, V.V. Atuchin, J. Phys. Chem. Solids 71 (2010) 958.

[18] B.R. Judd, Phys. Rev. 127 (1962) 750.

[19] G.S. Ofelt, J. Chem. Phys. 37 (1962) 511.

[20] S. Tanabe, T. Ohyagi, N. Soga, T. Hanada, Phys. Rev. B 46 (1992) 3305.

[21] C.K. Jørgensen, R. Reisfeld, J. Less-Common Met. 93 (1983) 107.

[22] A. Kumar et al. Spectrochimica Acta Part A 58 (2002) 3067-3075.

[23] J.H. Yang, S.X. Dai, Y. Zhou, L. Wen, L.L. Hu, Z.H. Jiang, J. Appl. Phys. 93 (2003) 977.

[24] S. Tanabe, N. Sugimoto, S. Ito, T. Hanada, J. Lumin. 87 (2000) 670-672.

[25] S. Sanghi et al. Spectrochimica Acta Part A 83 (2011) 94–99

[26] L.R. Moorthy et al. Spectrochimica Acta Part A 56 (2000) 1759–1771

[27] M.P. Hehlen, N.J. Cockroft, T.R. Gosnell, et al., Phys. Rev. B 56 (1997) 9302.

[28] Z. Pan, S.H. Morgan, K. Dyer, et al., J. Appl. Phys. 79 (1996) 8906.

[29] S. Tanabe, N. Sugimoto, S. Ito, T. Hanada, J. Lumin. 87 (2000) 670–672.

[30] P. Becker, Cryst. Res. Technol. 38 (2003) 74-82.

[31] W. Ryba- Ramanowski et al. Opt. materials 31 (2009) 1547-1554.

[32] Y.N.Ch. Ravi Babu et al. Physica B 407 (2012) 705-711

[33] M.R. Reddy, S.B. Raju, N. Veeraiah, J. Phys. Chem. Solids 61 (2000) 567.

[34] E.I. Kamitsos, M.A. Karakassides, Phys. Chem. Glasses 30 (19) (1989) 45.

[35] E.I. Kamitsos, M.A. Karakassides, G.D. Krissikos, J. Phys. Chem. 91 (1987) 107.