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ABSTRACT 
 
The structure factor for the interacting Bose system at finite temperatures below the Lambda-transition temperature 
of liquid He4 has been studied for two types of interacting potentials using a theoretical formulation due to Isihara 
[Physica B (Netherlands), 106 (1981) 161] and Isihara and Samulski [Physica A (Netherlands), 86 (1977) 257]. In 
our work we have considered liquid He4 below its Lambda transition temperature which makes it imperative for us 
to consider the important aspects of much body interaction by taking recourse to the reaction matrix formalism of 
many body theories. We expect that our work will provide some additional inputs to the theoretical studies made till 
date for derivation of the energy excitation spectrum and structure factor for a system of interacting Bore Assembly. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 
The study of the structure of liquid involves a quantity called structure factor which can be defined as a measure of 
the diffraction produced by the sample under study, compared to the diffraction that would be produced by an ideal 
gas. He4 liquefies from gas to liquid at 5.2K above absolute zero temperature at normal pressure. The super fluid 
phase transition happens at 2.2K. The density temperature function has a slop discontinuity there; this means a 
discontinuous thermal expansion coefficient. There is also a sudden change in the dielectric constant. The specific 
heat at constant volume has a singularity at 2.19K that looks like the Greek letter Lambda.  Hence the name 
“Lambda point”.  Liquid He4 called “He-II” below the Lambda point creeps along thin films and flows through 
narrow tubes with zero viscosity below a critical speed. Fritz London [1] noted the possible connection to the Bose-
Einstein condensation of an ideal gas which predicts a Lambda point at 3.13K. Landau [2] in 1941 made a theory 
good near absolute zero, but not near the Lambda point. Feynman’s  first super fluid paper argued that in spite of the 
inter-atomic interactions, super fluid helium was a Bose-Einstein condensate similar to what happens in the ideal gas 
where the interactions are absent. Feynman’s [3] second super fluid paper in 1953 looked at the ground state many 
atom wave function that dominates the behavior of the liquid near absolute zero. The problem is to construct an 
excited state. He argued, like Landau in 1941, that the lowest energy excitations were compression sound waves 
whose quanta are longitudinal phonons with no energy gap. Additional particle-like must have an energy gap and an 
effective mass. Feynman’s [3] third super fluid helium paper appeared in 1954 on the excited may-atom wave-
functions. 
 
He4, in its liquid phase, has another phase transition called Lambda transition which divides the liquid into two 
distinct phases. , He-I and He-II. Kamerlingh Onnes [5], shortly after he liquefied helium in 1908 noted that the 
density of the liquid appeared to pass through an abrupt maximum at about 2.2K decreasing slightly thereafter. 
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Further investigations revealed that the critical temperature is 2.176K and that it represents a transition to new state 
of matter known as He-II, in which, the heat conductivity is very large of the order of 3x106 times greater and the 
viscosity enormously less than that at a higher temperature.  The state has no latent heat and its specific heat curve is 
discontinuous. The temperature of 2.176K is called the “Lambda Transition Temperature”, or briefly as the λ-point. 
The λ-point gets its name from the λ-like shape of the specific heat curve at the λ-temperature. The isobaric 
expansion coefficient, vapour pressure and the specific heat all have singularities at the λ-point. The specific heat of 
the liquid He4 at higher densities has been measured above 1.2K by Hercus et al. [6] and by lounsmaa et al. [7].  
 
The first theoretical account of the Lambda transition was given by F. London [1,8] who regarded it as the analogue 
in a liquid of Bose-Einstein condensation  predicted for an ideal Bose gas. The excitation models of liquid He4 put 
forward by London on the basis of quasi-particle of elementary thermal excitations are well corporate by 
experimental evidence. Liquid He4 below its Lambda transition is found to exhibit the rapid thermodynamic changes 
around 0.6K and the recent theoretical studies on the interacting bosons with a two body potential composed of a 
hard core followed by two Gaussians have resulted an energy excitation spectrum similar to that of liquid He4. The 
potential i.e. the Gaussian equivalent of the Lennard-Jones potential has recently been used by Khanna et al. [9-13], 
in their study on interacting bosons and properties of liquid He4.  
 
The calculations in the present work have enabled us to derive the structure factor for the interacting Bose system at 
finite temperatures below the Lambda-transition temperature of liquid He4. 
 

MATERIALS AND METHODS 
 
II.  THEORETICAL FORMULATION: 
We consider a system of N interacting bosons enclosed in a volume V such that the density ρ is held constant even 
when N and V approach unity. The bosons are assumed to be interacting via either of the following two forms: 
 
(a) Hard core followed by a combination of both repulsive and attractive Gaussian potentials (which is the 
Gaussian equivalent of the Lennard-Jones potential) [13] given by  
 

���� = �+∞,                                                                              � < �
4�� �exp ����

��
��� − ���� ����

� !�"  ,                         � ≥ � �                  (1) 

 
 

where a is the diameter of the hard core , ϵ is the depth of the potential and  µR        and µA are the repulsive and 
attractive ranges respectively after the hard core. 
 
(b) Hard core followed by square well is given by  
 

     ���� = �+∞,                   � < �−�,            � < � < $0,                       � > $ �                                                                       (2) 

 

  where b is the range of the attractive square well after the hard core. 
 
Now as obtained by Samulski and Isihara [14], the structure factor for a system of bosons interacting via a potential 
whose Fourier transform is U(q) is given by  
       (3) 
 
 
 
 
 
 
where ɛ(q) is the excitation energy given by  
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        (4) 
 
and        (5) 
 

In equation (4) C is the velocity of sound and 
kT

1=β  , k being the Boltzmann constant and T is the absolute 

temperature. 
Equation (3) was derived by Samulski and Isihara [14] in their macroscopic theory and it is easily seen that at 
absolute zero, this equation reduces itself to the well-known Feynmann relation 
  (6) 
 
 
 
 
Assuming that in the region q-0, the energy is phonon- like, i.e. 
  (7)  
 
We see that Equation (6) gives 
 (8) 
I 
 
 
 
sihara [15] in his study on the temperature variation of the structure factor of liquid He4 adopted a soft potential with 
a Lennard -Jones type of tail given by  
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��,- , � ≥ ��                                          (9) 

 
and used the Fourier transform  of this potential obtainable from Ref.16. The result obtained is that, for small 
momentum and in a range of few degrees of temperature, Equation (4) gives 
     (10) 
where 
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Thus, for smaller q values, the structure factor has been found to be given by 
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The results obtained for the structure factor thus derived were compared with the experimental data [17] on liquid 
He4 based on neutron diffraction and X-ray scattering. 
 
But as discussed above, in the case of the helium atoms in liquid He4, the interaction potential is regarded as having 
hard repulsive core instead of soft ones as stipulated by Isihara [15].  However, Fourier transform of interaction of 
an interaction potential having a hard core cannot be evaluated. Moreover, if we only take the matrix element of the 
interaction potential, the effect of multiple scattering cannot be taken into account. Thus to take account of the 
effects of multiple scattering and also to use an interaction potential having a hard core, the Fourier  transform of the 
interaction in Equation(4)  U(q) should be replaced by the matrix elements of  the reaction matrix tq[ Khanna et al]. 
 
Thus, we write the equation (4) as 
 
 (15) 
 
 
 
 
Where m* is the effective mass of the bosons, t00,00 is the ground-state reaction matrix and tq is the reaction matrix 
for q≠0 states. The matrix elements of the reaction matrix tq were calculated by Khanna et al. [10, 11]  earlier using 
the theory of Brueckner and Sawada [18] and we have  
 
 (16) 
 
 
Phukan et al. [12] have already used the ground-state reaction matrix t00,00 for the interacting potential given by 
Eq.(1), as obtained from the work of Khanna and Das [13] and Khanna and Phukan [10,11] nhave the expression for 
t00,00 when the interaction potential is of the type given by Eq.(2). Thus for the Gaussian equivalent of the Lennard-
Jones potential,  
 
 (17) 
 
 
 
And for the hard core followed by an attractive square well 
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Equation (16) then gives 
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where 
  (21) 
 
 
 
 
when the bosons are interacting via the potential given by Eq.(2) 
 
With tq thus calculated, the expression for the excitation energy ɛ(q) for the system of interacting bosons can be 
written from Eq.(15). 
  
For finite temperatures and in the low momenta region, we have from Equations (3), (4) and (5), to a first 
approximation  
 

                                           (26) 
 

 
 
 
For the Gaussian equivalent of the Lennard-Jones potential we thus obtain  
 

                                                                                                                                                                                               (27) 
 
 
 
 
 
 
 
 
 
 
And, for the hard sphere plus square well type of interactions we get  
 

 
 

(28) 
 
 
 
 
 
 
 
 

III. CALCULATIONS AND RESULTS: 
Calculation for the structure factor at non zero temperatures T=0.4K, 0.6K and 0.8K as given by equation (27) and 
(28) have the results as shown in Table-I,II and III and figures 1, 2 and 3. In these calculations, we have the 
following values for the different parameters appearing equations (26), (27) and (28). 
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m=6.64x10-24g 
ɛ=14.11x10-16erg 
k=1.38x10-16erg/deg 
 
 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Fig1: Variation of  S(q) with q at T=0.4K. Series 1 and 2 are for the Gaussian equivalent of Lennard Jones potential and series 3 and 4 
are for hardcore  followed by square well type of potential for m*/m=1.6 and 2.0 respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig2: Variation of  S(q) with q at T=0.6K. Series 1 and 2 are for the Gaussian equivalent of Lennard Jones potential and series 3 and 4 
are for hardcore  followed by square well type of potential for m*/m=1.6 and 2.0 respectively. 
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Fig3: Variation of  S(q) with q at T=0.8K. Series 1 and 2 are for the Gaussian equivalent of Lennard Jones potential and series 3 and 4 
are for hardcore  followed by square well type of potential for m*/m=1.6 and 2.0 respectively. 

 
DISCUSSION 

 
Fig 1 shows the variation of the structure factor S(q) with q for our systems of bosons at T=0.4K . Series (1) and (2)  
are for the case of hard spheres followed by the sum of two  Gaussians and series (3) and (4) are for the case when 
the potential is hard core followed by an attractive square well,  for m*/m=1.6 and m*/m=2.0 respectively. Similarly 
is the case with Fig2 (temp 0.6K) and Fig3 (temp 0.8K). From the graphs, it is seen that the peak in the S(q)-q graph 
is sharper and narrower when the potential is the Gaussian equivalent of the Lennard Jones potential. As structure 
factor indicates the degree of spatial order in the system, this result explains that when the particles interact with a 
potential having repulsive element after the hard core, the spatial ordering will increase. On the other hand, when the 
potential has a deeper attractive square well after the hard core the particles, after getting repelled by the hard core, 
get trapped in the attractive well and the particles will get spatially more delocalized, resulting in a broader peak. 
 
Further, from the graph it is seen that the magnitude of the peak in S(q) decreases as m*/m increases. Considering 
the fact that the peak in S(q)-q graph denotes the minimum in the excitation energy, we can infer from our results 
that, as m*/m value increases i.e. when the particles become more and more repulsively interacting, the energy gap 
between the zero momentum state and the first excited state will be smaller. 
 
In the experimental curve of Achter and Meyer [19] on structure factor of liquid He4, peak of S(q)  was at the q-
value of 2Å-1. Our theoretical graphs also show the peak to occur exactly at 2Å-1in vicinity of this temperature for 
m*/m=1.6, indicating interacting qualitative agreement between theory and experiment. 
 
Henshaw [20] had shown that the temperature dependence of the spatial order in liquid He4 undergoes a change in 
the vicinity of the Lambda transition temperature, Tλ. This result from experiment is reflected in our theoretical 
results (Fig1, 2 &3) when the S(q)-q graph enters the phonon region. There is a distinct sharp variation in the value 
of S(q). 
 
Experiment conducted by V.F. Sears [17] and a host of the other workers show that a liquid He4 is cooled towards 
Tλ. The spatial order shows a gradual increase as may be expected due to decrease in thermal disorder. Further 
cooling from the neighborhood of results in decrease Tλ results in decrease of spatial order. This result from 
experiment is also obtainable from our graphs where we find that the value of S(q) at 0.6K is higher than at T=0.4K. 
 
The decrease in spatial order with decrease of temperature as shown in our graphs can be explained by admitting the 
phenomenon as a compensate of the occurrence of the Bose Condensate in liquid He4. If on cooling a sizeable 
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fraction of He4 atoms condense to a macroscopic state of definite momentum, then these atoms become spatially 
delocalized and the overall spatial order must decrease. In our case this is represented by the decrease in the value of 
S(q) with q in the phonon region. Thus the decrease in the spatial order may be attributed to the growth of a finite 
condensate fraction with lowering of temperature. 
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