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ABSTRACT

The structure factor for the interacting Bose system at finite temperatures bel ow the Lambda-transition temperature
of liquid He* has been studied for two types of interacting potentials using a theoretical formulation due to Isihara
[Physica B (Netherlands), 106 (1981) 161] and Isihara and Samulski [ Physica A (Netherlands), 86 (1977) 257]. In
our work we have considered liquid He* below its Lambda transition temperature which makes it imperative for us
to consider the important aspects of much body interaction by taking recourse to the reaction matrix formalism of
many body theories. We expect that our work will provide some additional inputs to the theoretical studies made till
date for derivation of the energy excitation spectrum and structure factor for a system of interacting Bore Assembly.

INTRODUCTION

The study of the structure of liquid involves a nfitg called structure factor which can be defirexda measure of
the diffraction produced by the sample under stadyppared to the diffraction that would be produbgdin ideal
gas. Hé liquefies from gas to liquid at 5.2K above abselaero temperature at normal pressure. The sugpir fl
phase transition happens at 2.2K. The density testyre function has a slop discontinuity theres thieans a
discontinuous thermal expansion coefficient. Theralso a sudden change in the dielectric constdrd. specific
heat at constant volume has a singularity at 2.8 looks like the Greek letter Lambda. Hence raene
“Lambda point”. Liquid H& called “He-II" below the Lambda point creeps alahin films and flows through
narrow tubes with zero viscosity below a criticaéed. Fritz London [1] noted the possible connectiothe Bose-
Einstein condensation of an ideal gas which predictambda point at 3.13K. Landau [2] in 1941 madbeory
good near absolute zero, but not near the Lambithé. peynman’s first super fluid paper argued thatpite of the
inter-atomic interactions, super fluid helium waBa@se-Einstein condensate similar to what happetise ideal gas
where the interactions are absent. Feynman’s [@rsk super fluid paper in 1953 looked at the grostade many
atom wave function that dominates the behaviorhefliquid near absolute zero. The problem is tostroit an
excited state. He argued, like Landau in 1941, thatlowest energy excitations were compressiomcéauaves
whose quanta are longitudinal phonons with no gngap. Additional particle-like must have an eneggy and an
effective mass. Feynman’s [3] third super fluidilwel paper appeared in 1954 on the excited may-atawe-
functions.

He®, in its liquid phase, has another phase transit@ifed Lambda transition which divides the liquido two
distinct phases. , He-l and He-Il. Kamerlingh Onffs shortly after he liquefied helium in 1908 adtthat the
density of the liquid appeared to pass through i maximum at about 2.2K decreasing slightlyrehéer.
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Further investigations revealed that the critiemhperature is 2.176K and that it represents aitiamdo new state
of matter known as He-ll, in which, the heat cortility is very large of the order of 3xiGimes greater and the
viscosity enormously less than that at a higheipemature. The state has no latent heat and itsfispeeat curve is
discontinuous. The temperature of 2.176K is calted“Lambda Transition Temperature”, or brieflytae A-point.
The A-point gets its name from thelike shape of the specific heat curve at thtemperature. The isobaric
expansion coefficient, vapour pressure and theifspéeat all have singularities at thepoint. The specific heat of
the liquid Hé at higher densities has been measured above ¥.Petrus et al. [6] and by lounsmaa et al. [7].

The first theoretical account of the Lambda traositvas given by F. London [1,8] who regarded ittes analogue
in a liquid of Bose-Einstein condensation predidier an ideal Bose gas. The excitation modelsopfid He' put
forward by London on the basis of quasi-particle edémentary thermal excitations are well corporhie
experimental evidence. Liquid Fibelow its Lambda transition is found to exhibié ttapid thermodynamic changes
around 0.6K and the recent theoretical studiesheniriteracting bosons with a two body potential posed of a
hard core followed by two Gaussians have resultedreergy excitation spectrum similar to that otilijHe'. The
potential i.e. the Gaussian equivalent of the Leswd@nes potential has recently been used by Khanah [9-13],

in their study on interacting bosons and propeufdiuid He'.

The calculations in the present work have enabtetb ulerive the structure factor for the interagtBose system at
finite temperatures below the Lambda-transitionpterature of liquid Hé

MATERIALSAND METHODS

[I. THEORETICAL FORMULATION:
We consider a system of N interacting bosons eadl@s a volume V such that the densitis held constant even
when N and V approach unity. The bosons are asstwnael interacting via either of the following tiarms:

(a) Hard core followed by a combination of both repwgsand attractive Gaussian potentials (which is the
Gaussian equivalent of the Lennard-Jones poteffitid])given by

+00, r<a

_ —a\2
4e, [exp (%)2 —exp (%) ] , rza (1)

u(r) ={

where a is the diameter of the hard coeds the depth of the potential anck 1 and |4 are the repulsive and
attractive ranges respectively after the hard core.

(b) Hard core followed by square well is given by
+o0, r<a
U(r) = {—S, a<r<b (2)
0, r>b

where b is the range of the attractive squaré afir the hard core.

Now as obtained by Samulski and Isihara [14], thecture factor for a system of bosons interactirega potential
whose Fourier transform is U(q) is given by
3

_ g’
S0 = 5@ L+ 2f{e(a)}]

wheree(q) is the excitation energy given by
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hCq h%q°
£(q) = ——=|U(q)+
(4)
1
d f = )
an (&) N

1
In equation (4) C is the velocity of sound afti= ﬁ , k being the Boltzmann constant and T is the labso

temperature.
Equation (3) was derived by Samulski and Isiha] i their macroscopic theory and it is easilyrsteat at
absolute zero, this equation reduces itself tonbke-known Feynmann relation

h2q2 (6)

S = 1

(a) 2me(q)

Assuming that in the region g-0, the energy is pmerike, i.e.
£(q) =rCq "

We see that Equation (6) gives
| (8)
S(a) =
2mC

sihara [15] in his study on the temperature variabf the structure factor of liquid Fladopted a soft potential with
a Lennard -Jones type of tail given by

Vo,
u(r) = {

r<a

e (@7 -®) r2a )

and used the Fourier transform of this potentlsiamable from Ref.16. The result obtained is tliat, small
momentum and in a range of few degrees of temperafguation (4) gives

(10)
where
£(q) = th[1+ 0,0°-0,9° +...... ]
h? [V, &
0, = 1-1678° -
L enrc? mon” 30 7
(11)
71 *
O. = 68 (12)
2~ 2amc?
Thus, for smaller g values, the structure factar een found to be given by
(13)
— 2 3
where S(a)/ S(O) =1+350"+ 59 (1)
S = (hC/kT) - 24,
19

Scholars Research Library



Mahmuda Begum and Puspa Nath Bora Arch. Phy. Res,, 2014, 5 (3):17-24

S, =26,

The results obtained for the structure factor ttheisved were compared with the experimental dafd ¢h liquid
He* based on neutron diffraction and X-ray scattering.

But as discussed above, in the case of the heliamsain liquid H&, the interaction potential is regarded as having
hard repulsive core instead of soft ones as stipdlhy Isihara [15]. However, Fourier transformirdkraction of

an interaction potential having a hard core catweotvaluated. Moreover, if we only take the mattement of the
interaction potential, the effect of multiple seaithg cannot be taken into account. Thus to talmwt of the
effects of multiple scattering and also to userdgieraction potential having a hard core, the Foutiansform of the
interaction in Equation(4) U(qg) should be replabgdhe matrix elements of the reaction magihanna et al].

Thus, we write the equation (4) as

15
_ th t N h2q2 ( )
00,00 m o

Where m is the effective mass of the bosonsedis the ground-state reaction matrix agdstthe reaction matrix
for g#0 statesThe matrix elements of the reaction matgixvere calculated by Khanna et al. [10, 11] ealging
the theory of Brueckner and Sawada [18] and we have

singa (16)
ga

Phukan et al. [12] have already used the grourtd-staction matrixgb oo for the interacting potential given by

Eq.(1), as obtained from the work of Khanna and [28fand Khanna and Phukan [10,11] nhave the s for

too,00 When the interaction potential is of the type giv®y Eq.(2). Thus for the Gaussian equivalent efltennard-
Jones potential,

tq = too,oo

17)
2h? (
t =*—+47T3/2£,u3—,uB
00,00 om a2,0 ( R A)
And for the hard core followed by an attractive aguwell
Ph? A 3 (17)
toooo = —— - b-a
0000 om a2 0 3 ( )
Equation (16) then gives
_ (18)
singa
tq - Xl?
where 2R
_ 3i2.(,,3 3 (19)
Xi= [W"‘ amr E(IUR - NA)}
For the potential of Equation (1) and
: (20)
Singa
t, = x, Sna
ga
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where
(21)

X, =

/]2712 _ 41 (b_a)g
2m pa® 3
when the bosons are interacting via the poteniargby Eq.(2)

With ty thus calculated, the expression for the excitadnargye(q) for the system of interacting bosons can be
written from Eq.(15).

For finite temperatures and in the low momenta aegwe have from Equations (3), (4) and (5), toirat f
approximation

2 KT

(26)

S(q) =

h2q2

el B
2m £(q) £(9)

For the Gaussian equivalent of the Lennard-Jontnpal we thus obtain

(27)

2kTX [?

5242 . 1/2
th{4CJ +xls'”qa}

hoX 21+

m p ga

S(q) =

h?q® singa |’
2m*C{ 9 4 x, q}
im p ga

And, for the hard sphere plus square well typentdractions we get

28
2KTX 3'? (28)

h%q? singa ]’
th{ 9~ 4 x, q}
4m p ga

hoX 2?1+

S(a) =

ga

, 2 - 172
Zm*c{hq +><2smqa}
4m p

[11. CALCULATIONSAND RESULTS:

Calculation for the structure factor at non zemperatures T=0.4K, 0.6K and 0.8K as given by eguat?7) and
(28) have the results as shown in Table-1,1l aridaid figures 1, 2 and 3. In these calculations, hage the
following values for the different parameters appepequations (26), (27) and (28).

A?=33
HA2=0.2206
Hr’=0.1103
a=2.1A
b=4.0A
m/m=1.6, 2.0
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m=6.64x10"g
€=14.11x10%rg
k=1.38x10"erg/deg

S(a)

1
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Figl: Variation of S(q) with g at T=0.4K. Series 1 and 2 arefor the Gaussian equivalent of Lennard Jones potential and series3 and 4
arefor hardcore followed by squarewell type of potential for m’/m=1.6 and 2.0 r espectively.
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Fig2: Variation of S(q) with g at T=0.6K. Series 1 and 2 are for the Gaussian equivalent of Lennard Jones potential and series3 and 4
arefor hardcore followed by square well type of potential for m’/m=1.6 and 2.0 r espectively.
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Fig3: Variation of S(q) with g at T=0.8K. Series1 and 2 arefor the Gaussian equivalent of Lennard Jones potential and series 3 and 4
arefor hardcore followed by squarewell type of potential for m’/m=1.6 and 2.0 r espectively.

DISCUSSION

Fig 1 shows the variation of the structure fact)Svith g for our systems of bosons at T=0.4Kri&e(1) and (2)
are for the case of hard spheres followed by time siitwo Gaussians and series (3) and (4) aréhiocase when
the potential is hard core followed by an attraztquare well, for "m=1.6 and mm=2.0 respectively. Similarly
is the case with Fig2 (temp 0.6K) and Fig3 (teng8K(. From the graphs, it is seen that the peakén3(q)-g graph
is sharper and narrower when the potential is thas&an equivalent of the Lennard Jones potertgaktructure
factor indicates the degree of spatial order ingymtem, this result explains that when the padidhteract with a
potential having repulsive element after the hane cthe spatial ordering will increase. On theeotiand, when the
potential has a deeper attractive square well #feehard core the particles, after getting repelig the hard core,
get trapped in the attractive well and the parsield get spatially more delocalized, resultingaifbroader peak.

Further, from the graph it is seen that the magkitaf the peak in S(q) decreases aémincreases. Considering
the fact that the peak in S(q)-q graph denotesrtimémum in the excitation energy, we can infer froor results
that, as m'm value increases i.e. when the particles become mnd more repulsively interacting, the energy ga
between the zero momentum state and the firstezksttate will be smaller.

In the experimental curve of Achter and Meyer [d8]structure factor of liquid Hepeak of S(q) was at the g-
va}Iue of 2A%. Our theoretical graphs also show the peak tormegactly at 2Alin vicinity of this temperature for
m /m=1.6, indicating interacting qualitative agreemieetween theory and experiment.

Henshaw [20] had shown that the temperature depeedef the spatial order in liquid Handergoes a change in
the vicinity of the Lambda transition temperatufg, This result from experiment is reflected in obedretical
results (Figl, 2 &3) when the S(q)-q graph entkesghonon region. There is a distinct sharp vanmaith the value
of S(q).

Experiment conducted by V.F. Sears [17] and a bbghe other workers show that a liquid “He cooled towards
T,. The spatial order shows a gradual increase as magxpected due to decrease in thermal disordetheétur
cooling from the neighborhood of results in deceeds results in decrease of spatial order. This refoln
experiment is also obtainable from our graphs wherdind that the value of S(q) at 0.6K is highwmar at T=0.4K.

The decrease in spatial order with decrease ofeestyre as shown in our graphs can be explainedimtting the
phenomenon as a compensate of the occurrence ddbe Condensate in liquid Hdf on cooling a sizeable
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fraction of H& atoms condense to a macroscopic state of defimitmentum, then these atoms become spatially
delocalized and the overall spatial order mustebs®. In our case this is represented by the dmcieahe value of
S(q) with g in the phonon region. Thus the decréaghe spatial order may be attributed to the ghowf a finite
condensate fraction with lowering of temperature.
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