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ABSTRACT 
 
The Fourier integral transform is well known for finding the probability densities for sums and differences of 
random variables. We use the Mellin integral transforms to derive different properties in  statistics and probability 
densities of single  continuous random variable. We also discuss the relationship between the Laplace and Mellin 
integral transforms and use of these integral transforms in deriving densities for algebraic combination of random 
variables. Results are illustrated with examples.  
 
Keywords: Laplace, Mellin and Fourier Transforms, Probability densities, Random Variables and Applications in 
Statistics. 
AMS Mathematical  Classification: 44F35, 44A15, 44A35, 44A12, 43A70. 
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INTRODUCTION 
 

The aim of this   paper  , we define a random variable (RV) as a value in some domain , say ℜ , representing the 
outcome of a process based on a probability laws .By the information above the probability distribution ,we integrate 
the probability density function (p d f)in the case of the Gaussian , the p d f  is 
 

f (x)=  
2)(

2

1

2

1 σ
π

πσ

−
−

X

E , ∞<<∞− x  

when  µ  is   mean and 2σ  is the variance.  

 
We define the p d f  for X+Y and XY ,where X and Y are the R Vs, by using the brief background on probability 
theory and see the convolution by using Laplace – Mellin integral transforms. 
 
In this paper we  define  Mellin  integral  transform , continuous random variable for X   and its p d fs  , continuous 
distribution function, expectations  and moments about origin and mean  for independent CRVs  X , mode  , median 
, quartiles  , deciles , percentiles , skew ness ( by using mean and mode   and  also  by using  quartiles) , kurtosis (by  
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using  moments) : Transform for the sum of the random variables, Convolution Algebra on )(1 ℜL ,: The Mellin 

integral transform, and relation with Laplace integral transform relation in between expected values and moments of 
CRVs  X ,one dimensional continuous random variable and its p d fs   , marginal  density functions,  theorems of 
addition and multiplication of CRVs  X and Y, relations in between expected values of CRVs  X and Y and  Mellin 
integral transform. 
 
3.1.2: Terminology 
To  avoid  confusion ,  it  is  necessary  to  mention  a  few  cases  in  which  the  terminology  used  in  probability  
theory   * ”Distribution”,( or  “law”)  in  probability  theory means  a  function  that  assigns  a  probability  

10 ≤≤ p   to  every  Borel  subset  of  ℜ   ; not  a  “generalized  function” ,as  in  the  Schwartz  theory  of 

distribution. 
 
  * For  historical  reasons  going  back  to  Henri  Poincard  ,  the  term “ characteristic   function “ in  probability  
theory  refers  to  as  integral  transform of  a  p d f,  not  to  what  mathematicians  usually  refer  to  as  the  
characteristic  function .For  that  concept  probability  theory  uses  “ indicator  function “ ,symbolized  I; e.g.  

)()1,0( xI   is  1  for  x ]1,0[∈   and  0  elsewhere .In  this  paper  as  will  not  use  the  term  “characteristic  function  

“  at  all. 

   * We  will  be talking  about  p d fs  being  in  )(1 ℜL  , and  this  should  be  taken  in  the  ordinary  mathematics 

a  sense  of  a  function  on  ℜ   which  is  absolutely  integrable  .  More  commonly  ,  probabilists  talk  about  

random  variables  being  in  21,LL  , etc. 

Which  is  quite  different  -in  terms  of  a  p d f  f, it  means  that  dxxfx )(∫ , dxxfx )(
2

∫ , etc   exist  and  are  

finite. It  would  require  an  excursion  into  measure  theory   to  explain  why  this  makes  sense  , suffice  it  to  

say  in  the  latter  case  we  should  really  say  something  like   )",,(" 1 PFL Ω  ,  which  is  not  at  all  the  same  

as  )(1 ℜL . 

 
3,1.3 : PROBABILITY  BACKGROUND 
  Probability theory starts with the idea of the outcome of some process   , which is mapped to a domain (i.e.ℜ )by a 

random variable say X ,we just think of ℜ∈x  
 
As a ‘realization’ of X  , with a probability law or distribution which tales us how much probability is associated 
with any interval [a ,b] ℜ⊂ .How much is given by a number 10 ≤≤ p  

 
Formally   ,  probabilities are implically defined by their role in the axioms of probability  theories .A probability 
law in ℜ  can be represented by its density or p d f which is a continuous function f(x) with the probability that the 

probabilities of finding x in [a , b] i.e. dxxfbaxP
b

a

)(]),[( ∫=∈ ,it gives the probability “mass” per unit length 

,which is integrated to measure the total mass in an interval . 
 

We define characteristics of a probability measure on ℜ  
 
                 1: for any [a   , b]   , 1]),[(0 ≤∈≤ baxP  

                 2: 1)],([ =∞−∞∈xP  

                 3:  if  φ=∩ ],[],[ dcba  , then ]).[(]),[(]),[],[( dcxPbaxPdcbaxP ∈+∈=∩∈  
From these properties and general properties of integral it follows that is f is a continuous p d f   , then 0)( ≥xf  
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and 1)( =∫
∞

∞−

dxxf  

For any RV  X ,with p d f f, it mean  dxxxfX )(∫
∞

∞−

== µ ,,this is usually designated by E(X),the expectation or 

expected value of X ,the variance of X is  
 

                               ]){( 2µ−xE = dxxfx )()( 2µ−∫
∞

∞−

 

A frequently used modes for such RVs is the Mellin  distribution , with  p d f.  
 

 f(x)= xr ex
r

−−

Γ
1

)(

1
 ,if x>0,0 otherwise ,when dxexr xr −−

∞

∫=Γ 1

0

)( ,where 1−rx  is the Mellin kernel foe r>0 is a 

parameter .We see expectation ,mean , variance , moments ,mode, median  , skew ness  , kurtosis ,etc. 
 
 
Independence is profoundly important in probability theory ,and is mainly what saves probability from being 
‘merely’ an application of measure theory .For the purpose of this paper , an intuitive definition suffices :two 
random variables X , Y are independent if the occurrence or  nonoccurrence of an event ],[ baX ∈  does not affect 

the probability of an event ],[ baY ∈  and vice versa .Computationally ,the implication is that “independence 

means multiply” i. e. if X ,Y are independent, 
 
 

                                 P ],[(],[(]),[&],[( baYPbaXPbaybax ∈∈=∈∈  

In this   paper , we will only consider independent RVs .If X ,Y are RVs ,by substituting ],[ ∞−∞  for either of the 
intervals of integration , it is seen that 
 

dyyfdxxf YX

b

a

)()( ∫∫
∞

∞−

= dxdyyfxf YX

b

a

)()(∫∫
∞

∞−

= dxdyyxf XY

b

a

),(∫∫
∞

∞−

 

                                     = dxdyyxf
b

a

),(∫∫
∞

∞−

= dxdyyxf
b

a

]),([ ∫∫
∞

∞−

= dxxf X

b

a

)([ ∫∫
∞

∞−

 

where   dyyxfxf XYX ),()( ∫
∞

∞−

= ,this  is true and )(yfY  is the marginal density of Y.   

 
3.1.4: Preliminary   Results 
3.1.4.1: Dfefinitions 

The Mellin integral transform of the function f(x) with its kernel 1−rx and  r>0 is the  
parameter , is denoted by M[f(x),r] and defined as  

                                M [f(x), r] = dxxfx r )(1

0

−
∞

∫ ,0<x<∞ ,r>0, 

whenever     this integral is exist. This is an important integral  transform ,whose use in statistics is related to 
recovering of probability distributions, product or quotient of independent nonnegative continuous random 
variables. 
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One of the main problems arising in the applications is that of inverting Mellin integral transform   ,i. e. the 
determination of the original function f(x) from the transform 
 
M [f(x), r] .This problem , formally solved by the inverse formula  

                                 f(x)= drmrxfMx
i

r
ic

ic

])([
2

1 _
−

∞

∞−
∫π

,can not be solved ,in most of cases, analytically. Therefore 

the only possible of inverting the transformed functions is by numerical means. 
 
3.1.4.2: Continuous  Random  Variable  
If  X  is  an random  variable  which  can  take  all  values  ( I .e. infinite  number  of  values  )in  an  interval , then  
X  is  called  a  continuous  random  variable. 
 
Its  probability  distribution  is  known  as continuous  probability  distribution  . 
If  function  f(x)  is  said  to  be a  function  of continuous  random  variable  X  ,if  it  satisfies  the  following  
conditions   

(1) f(x) 0≥         and     (2) 1)( =∫
∞

∞−

dxxf  

3.1.4.3: Probability   Density  Function  of  Continuous  Random  Variable  
 
   A continuous function y=f(x) such that  
                                         (1) f (x) is  integrable  

                                         (2) 1)( =∫ dxxf
b

a

 if X lies in [a ,b] and  

                                          (3)  )()( βα
β

α

≤≤=∫ xPdxxf , where  ba <<< βα                     is called 

probability function of a continuous random variable X.  
                       Thus for a continuous random variable  

                                                

               Clearly dxxf )(∫
β

α

    represents   the area under the curve f(x) ,the x-axis  

                        and   the  ordinates x=α  and x=β  

 
3.1.4.4: Continuous   Distribution   Function 
    Probability distribution of  X or the probability density function of X helps os to     
    find   the probability that X will be within a given interval [a ,b] i.e.  

                            dxxfbxaP
b

a

)()( ∫−≤≤ , 

                             other    conditions being satisfied. 
    If X is a continuous random variable , having the probability density function f(x) 
    then   the function 

                             

dttfxXPxP )()()( ∫
∞

∞−

=≤=
    

)( ) ( βα
β

α

≤≤=∫ x P dx x f 
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                                dxxfxXPxP )()()( ∫
∞

∞−

=≤=         , ∞≤≤∞− x  

 
    is called distribution function  or  cumulative distribution function of the continuous random    variable    X. 
 
3.1.4.5: Probabilities  of  Distribution   Function   F(x)   of  a  Continuous  Random  
             Variable    
                         1: The function F(x) is defined for every real number x 
                         2: since F(x) denotes probability and probability of x lies between o and 1 

                                                1)(0 ≤≤ xF  
                         3: F(x) is a non-decreasing  function which means if 

                                                211 xx ≤   , )()( 21 xFxF ≤  
3.1.4.6: The  Derivative  of    F(x) :  
      F(x) exists at all points (except perhaps at a    finite number    of   points) and is equal  
     to the probability density function  f(x), 

                              0)()()( ≥== xfxf
dx

d
xF  

     Provided derivative exists. 
     If F(x) is a distribution function of a continuous random variable then 
                                )()()( aFbFbxaP −=≤≤  

 
3.1.5: Main   Results  
3.1.5.1: Expectation   and  Moments  about   origin  by  using   MIT  
           DMIT 
     The expectation of continuous random variable X is denoted by E[X] and defined as  

                                E[X] = dxxxf )(∫
∞

∞−

 

      For the Mellin Integral Transform the Probability Density Function is 

                                f(x)= xr ex
r

−−

Γ
1

)(

1
, r>0  

      where     1−rx  is the Mellin kernel. then  1)( =∫
∞

∞−

dxxf  

      For the Mellin Transform  

                dxxf )(
0
∫
∞

= dxex
r

xr −−
∞

Γ∫
1

0 )(

1
=

)(

1

rΓ
dxex xr −−

∞

∫
1

0

 

                                 =
)(

)(

r

r

Γ
Γ

=1 ,  where       1)( =∫
∞

∞−

dxxf                          

   If f(x) = xe
r

−

Γ )(

1
 is the   function   of  continuous random variable X, then 

                                M [f(x),s]= )(1

0

xfx r−
∞

∫ = dxex
r

xr −−
∞

∫ Γ
1

0 )(

1
= dxex

r
xr −−

∞

∫Γ
1

0)(

1
 

                                                =
)(

)(

r

r

Γ
Γ

=1=
'
0xµ
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   M [f(x), s] =1, is the  moment about   origin  , denoted by '
0µ , '

0µ =1 

                E[X] = dxxxf )(∫
∞

∞−

= dxe
r

x xr −−
∞

∞− Γ∫ )(

11 =
)(

1

rΓ
dxex xr −

∞

∞−
∫  

                         =
)(

1

rΓ
xr ex −−+

∞

∫
11

0

=
)(

1

rΓ
)1( +Γ r =

)(

)()1(

r

rr

Γ
Γ+

=(r+1)= '
1µ  

                E[X]= '
1µ =(r+1) 

                E[X
2

] = dxxfx )(2

0
∫
∞

 = dxex
r

x xr −−
∞

Γ∫
12

0 )(

1
=

)(

1

rΓ
dxexx xr −−

∞

∫
12

0

 

                           =
)(

1

rΓ
dxex xr −+

∞

∫
1

0

=
)(

1

rΓ
dxex xr −−+

∞

∫
12

0

 

                           =
)(

)2(

r

r

Γ
+Γ

=
)(

)()2)(1(

r

rrr

Γ
Γ++

=(r+1)(r+2)= '
2µ  

                E[X
2

]= '
2µ =(r+1)(r+2) 

                E[X
3
] = dxxfx )(3

0
∫
∞

= dxex
r

x xr −−
∞

Γ∫
13

0 )(

1
=

)(

1

rΓ
dxexx xr −−

∞

∫
13

0

 

                           =
)(

1

rΓ
dxexx xr −−+

∞

∫
133

0

 

                              =
)(

)3(

r

r

Γ
+Γ

 =
)(

)()3)(2)(1(

r

rrrr

Γ
Γ+++

=(r+1)(r+2)(r+3)= '
3µ  

                E[X
3
]= '

3µ =(r+1)(r+2)(r+3) 

                E[X
4

] = dxxfx )(4

0
∫
∞

 = dxex
r

x xr −−
∞

Γ∫
14

0 )(

1

)(

1

rΓ
dxexx xr −−

∞

∫
14

0

   

                            =
)(

1

rΓ
 dxex xr −−+

∞

∫
14

0

           

 

                           =
)(

)4(

r

r

Γ
+Γ

=
)(

)()4)(3)(2)(1(

r

rrrrr

Γ
Γ++++

 

                           =(r+1)(r+2)(r+3)(r+4) ='
4µ  

                 E[X
4

]= '
4µ =(r+1)(r+2)(r+3)(r+4) 

 
3.1.5.2: The   Mellin    Integral    Transform  and  Moments  (Moments about origin)   
 
     If   X is a cintineous random variable, then the expectations are as follows 

           1: ][ 1−rxE = dxxfx r )(1

0

−
∞

∫ =M[f(x),r]  = '
0xµ =1 
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           2: ][ rxE = dxxfx r )(
0
∫
∞

= dxxfx r )(11

0

−+
∞

∫ =M[f(x),r+1]= '
1xµ =(r+1) 

           3: ][ 1+rxE = dxxfx r )(1

0

+
∞

∫ = dxxfx r )(12

0

−+
∞

∫ =M[f(x),r+2] = '
2xµ =(r+1)(r+2) 

           4: ][ 2+rxE = dxxfx r )(2

0

+
∞

∫ = dxxfx r )(13

0

−+
∞

∫ =M[f(x),r+3]= '
3xµ =(s+1)(s+2)(s+3) 

           5: ][ 3+rxE = dxxfx r )(3

0

+
∞

∫ = dxxfx r )(14

0

−+
∞

∫ =M[f(x),r+4]  

                                                      = '
4xµ =(s+1)(s+2)(s+3)(s+4) 

     If f(x) =
)(

1

sΓ
 is the function of continuous random variable   Y , then 

           6: ][ 1−rYE = dyyfy s )(1

0

−
∞

∫ =M[f(y),r]= '
0yµ =1 

           7: ][ rYE = dyyfy s )(
0
∫
∞

= dxxfx s )(11

0

−+
∞

∫ =M[f(y),s+1]= '
1yµ =(s+1) 

           8: ][ 1+rYE = dyyfy s )(1

0

+
∞

∫ = dyyfy s )(12

0

−+
∞

∫ =M[f(y),s+2] = '
2yµ =(s+1)(s+2) 

           9: ][ 2+rYE = dyyfy s )(2

0

+
∞

∫ = dyyfy r )(13

0

−+
∞

∫ =M[f(y),s+3]= '
3yµ =(s+1)(s+2)(s+3) 

          10: ][ 3+rYE = dyyfy s )(3

0

+
∞

∫ = dyyfy s )(14

0

−+
∞

∫ =M[f(y),s+4] 

                                                        = '
4yµ =(s+1)(s+2)(s+3)(s+4) 

 
3.1.5.3: Moments   Abour  Mean  , Variance , Skewness   and  Kurtosis             
     The varience of the random variable X   is denoted by V(X) and defined as  
                 1: Varience   of X=V(X) 

                                           =E[(X-m)
2

] = E[X
2

]-(E[X])
2

 = 2µ  

                                           =
2''

1
'
22 )( xxx µµµ −=

=(r+1)(r+2)-(r+1)
2

=(r+1)(r+2-r-1) 

                                  V(X) =(r+1)= 2xµ  

      The other moments about mean are obtained  using relations in between moments   
       about a origin and moments about mean. 

                 2:
3'

1
'
1

'
2

'
33 )(23 xxxxx µµµµµ +−=

 

                                           =(r+1)(r+2)(r+3)-3(r+1)(r+2)(r+1)+2(r+1)
3
 

                                           =(r+1)[(r+2)(r+3)-3(r+1)(r+2)+2(r+1)
2

] 

                                           =(r+1)( )24269365 222 +++−−−++ rrrrrr   

                                    3xµ
 =2(r+1) 

(

(
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                 3:
4'

1
2'

1
'
2

'
1

'
3

'
44 )(3)(64 xxxxxxx µµµµµµµ −+−=

 

             =(r+1)(r+2)(r+3)(r+4)-4(r+1)(r+2)(r+3)(r+1)+6(r+1)(r+2)(r+1)
2

-3(r+1)
4

             

=(r+1)[ )133(3)12)(2(6)34)(2(4127)(2( 23222 +++−+++++++−+++ rrrrrrrrrrrr ] 

=(r+1)( 24142127 223 +++++ rrrrr - 2432812164 223 −−−−− rrrrr  

   + )39931224126126 23223 −−−−+++++ rrrrrrrr   
=9(r+1)                                        

                      4xµ =9(r+1) 

3.1.5.4: Measure  of  Skewness (1β 1γ ) 
       Karl Pearson’s defined the four coefficients based on moments about mean 
       These are used to measure the skewness and kurtosis 
       By using the moments about mean  , we define the Karl Pearson’s  skewness and  as  follows 
 

skewness   =1γ = 1β =
3
2

2
3

µ
µ

=
3

2

)1(

)1(8

+
+

r

r
=

1

8

+r
 

                  If 1β  =0   , the distribution is symmetric            

                  If 1β  <0   , the distribution is negative skew      

                  If 1β  >0   , the distribution is positive skew    

For  r= 1  to  n , 1β  >0 ,the  distribution  is  positive  skew  for  Mellin  integral  transform. 

 

3,1.5.5: Measure  of  Kurtosis  ( 22 ,γβ ) 

                 Kurtosis= 2γ = 32 −β =
2
2

3

µ
µ

-3=
2)1(

)1(9

+
+

r

r
-3= 3

1

9 −
+r

 

                  (1)  If 2γ =0, the distribution is normal or mesokurtosis  

                  for     2β =3  when  r=2          

                  If 2γ >0, the distribution is more peaked or leptokurtosis     

                  for      2β >3  when  r=1          

                  If 2γ <0, the distribution is more flat or  platykurtosis 

                  for   2β <3   when  3≥r  

 
3.1.5.6: Mode 

    If  f(x)  be  a  function  of  continuous  random  variable  X  , then  0)(' == xf
dx

dy
 

    We   get   values  of  X  i.e. 1X , 2X ,…., nX
,  and  if  

11
][

2

2

XXdx

yd
=

<0  ,  then   

    XX =   is   the  mode 

      If  )(xf = 1

)(

1 −−

Γ
rx xe

r
  be  the  contineius  function  of  random  variable  X,  then 

     )(' xf  = ])1()([
)(

1 21 xrxr exrex
r

−−−− −+−
Γ
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               = ])1()([
)(

1 21 xrxr exrex
r

−−−− −+−
Γ

 

               = )]1([
)(

2

−+−
Γ

−−

rx
r

ex xr

 

               = ]1[
)(

2

−+−
Γ

−−

rx
r

ex xr

 

   f’(x)=0   ,  then 
   -x+r-1=0 
   x=r-1,   is   the   point 

   f’’(x)= ])1([
)(

21 −−
−

−+−
Γ
− rr

x

xrx
r

e
+ ])2)(1()1([

)(
32 −−

−

−−+−−
Γ

rr
x

xrrxr
r

e
 

        =
)(r

e x

Γ

−

])2)(1()1()1([ 3221 −−−− −−+−−−− rrrr xrrxrxrx  

        =
)(r

e x

Γ

−

)]2)(1()1(2[ 23 −−+−−− rrxrxx r  

   1)](''[ −=rxxf =
)(

)1(

r

e r

Γ

−−

)]2)(1()1)(1(2)1[()1( 23 −−+−−−−− − rrrrrr r  

                    =
)(

)1(

r

e r

Γ

−−

)]2)(1()1(2)1[()1( 223 −−+−−−− − rrrrr r  

                    =
)(

)1(

r

e r

Γ

−−

)]2)(1()1([)1( 23 −−+−−− − rrrr r  

                    =
)(

)1(

r

e r

Γ

−−

)]12)(1[()1( 3 +−−−− − rrrr r  

                    =
)(

)1(

r

e r

Γ

−−

)]1([)1( 3 −−− − rr r  

                    = - 
)(

)1(

r

e r

Γ

−−
2)1( −− rr  

                    1)](''[ −=rxxf
 

     Then  f(x)  is  maximum  at  x=r-1 
     The   value   of  the  mode  is  r-1 
     Mo=x=r-1 
 
3.1.5.7: Median , Quartiles , Deciles,  ercentiles, QD.,   Coeff.  Of  QD, Bowley’s  
             Method  , Karl   Pearson’s  Method  for  Coeffg.pf  Skewness  
           

If  f(x)= 1

)(

1 −−

Γ
rx xe

r
 be  a  function  of  continuous  random  variable  X , and  

       
2

1
)(

0

=∫ dxxf
M

,   then   M=Md   is  said  to  be  Median 
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2

1

)(

1 1

0

=
Γ

−−
∫ dxex

r
xr

M

  then  
2

1

)(

1 1

0

=
Γ

−−
∫ dxex

r
xr

M

 

                 
)(

1

0 r

ex xrM

Γ

−−

∑ =
2

1
             then   

)(

1

0 r

eM MrM

Γ

−−

∑ =
2

1
 

                 
)(

1

0 r

M
e

rM
M

Γ

−
− ∑ =

2

1
          then   ]

!2!1
1

)0(
[

21

−−−++++
Γ

−
− MMM

e M =
2

1
 

                 ]
!2!1

1[]
)0(

[
21

−−−++++
Γ

−
−

− MM
e

M
e MM =

2

1
 

                 1−− Me M + MM ee− =
2

1
      then   1−− Me M +1=

2

1
 

                 1−− Me M =
2

1−
                  then   Me− =

2

1−
M 

                 −−−+− .
2

1
2M

M =
2

1−
M 

    Comparing   first   term  on  both  sides  

                 1=
2

1−
M   then 

    Md=-2   , this   is   the  value  of   the  Median 
                    Q1=Quartile  N0.1= - 4 

                    Q3=Quartile  No.3= -
3

4−
 

                    
r

Qr

4−=    where  r=1, 2, 3 

                    
r

Pr

10−=    whetre r=1, 2, --,9 

                       Quatile   Deviation=QD=
2

13 QQ −
=

2

4
3

4 +−

=
3

4
 

                       Coefficient   of   Q.D=
13

13

QQ

QQ

+
−

=

4
3

4

4
3

4

−−

+−

=

3

16
3

8

−
=

2

1−
=-0.5 

                       Bowley’s    Method  

                       Skeness =2(Md)-Q1-Q3= 2(-2)+4+
3

4
=

3

4
 

                       Coeff.of  Skewness =
13

31)(2

QQ

QQMd

+
−−

 

                                                         =

4
3

4
3

4
4)2(2

+−

++−
 =

3

8
3

4

 = 5.0
2

1 =  
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                          Kalpearson’s  Method 
                          Skeness=Mean-Mode =r+1-(r-1)=r+1-r+1=2 

                          Coeff.  Of  Skewness =
std

emean mod−
=

1

)1()1(

+
−++

r

rr
=

1

2

+r
 

                          where    r 1.1≥                         
 
3.1.5.8: Mean  Deviation  from  Mean 
      If  X  be  a  continuous  randon  variabl  then  its  p .d. function  if 

      f(x)=
 1

)(

1 −−

Γ
rx xe

r  

  

      MD=
dxxfXX )(−∫

∞

∞−
 =

XX −∫
∞

0

1

)(

1 −−

Γ
rx xe

r
dx

 

            = )(

1

rΓ
xx −∫

∞

∞−

1−− rx xe
 = )(

1

rΓ [
]1

0

1

0

dxxexdxxxe rxrx −−
∞

−−
∞

∫∫ −
 

            = )(

1

rΓ
][ 1

0

11

0

dxxexdxxe rxrx −−
∞

−+−
∞

∫∫ −
 = )(

1

rΓ
)]()1([ rxr Γ−+Γ

 

            = )(

1

rΓ  
)]()()1[( rxrr Γ−Γ+

  =
]1[

)(

)(
xr

r

r −+
Γ
Γ

 

      
xrMD −+= 1

     where   r  is  positive 
 
3.1.5.9: Probability 

    If   )()( xf
dx

d
xF = ,   and  0)( ≥xf  then 

     )()()( aFbFbxaP −=≤≤   or 

     )( bxaP ≤≤  = dxxf
b

a

)(∫  = dxxfx r
b

a

)(1−
∫   

     For   Mellin   Integral   Transform   

     )0( ∞≤≤ xP = dxxfx r )(1

0

−
∞

∫ ,  where  

     f(x)=
)(r

e x

Γ

−

  is  the  continuous .function  then  

     )0( ∞≤≤ xP = dxex
r

xr −−
∞

∫ Γ
1

0 )(

1
=1 

 
3.1.5.10:    The   Sum   of  Random  Variables   by  using  MIT 
   Suppose that the RV X has p d f )(xf X  and Y has p d f )(yfY  and X and Y  

   are independent .Consider the transformation 22: ℜ→ℜψ  given by         

                          ),().(),( zxyxxyx =+=ψ  
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   If we can determine the    joint  density function ),( zxf XZ ,then the marginal density    

   function )(zf z = dxzxf XZ ),(∫
ℜ

= dxzxf XZ )],([ 1−

ℜ
∫ ψ  

                         = dxxzxf XZ ),( −∫
ℜ

 = dxzzfxf YX )()( −∫
ℜ

 , 

   where  X and Y are independent 

                         = )(* zff YX  

 
The nest-to-last line above is intuitive   it says that we find the density  for Z=X+Y by integrating the joint density of 
X ,Y over all points where X+Y=Z .i.e. Y=Z-X.  
 
By using the Fourier transform [7] 

                         dxeex
r

xixr ξπ21

)(

1 −−−

ℜ Γ∫  = dxex
r

xir )21(1

)(

1 ξπ+−−

ℵ
∫Γ

 

substitute    qxi =+ )21( ξπ ,x=
ξπi

q

21+
, dx=

ξπi

dq

21+
,then 

                          =
ξπξπ i

dq
e

i

q

r
qr

21
)

21
(

)(

1 1

++Γ
−−

ℵ
∫  

                          = dqeq
ir

qr
r

−−

ℜ
∫+Γ

1

)21(

1

)(

1

ξπ
 

                          =
ri

r

r )21(

)(

)(

1

ξπ+
Γ

Γ
  

                          =
ri )21(

1

ξπ+
 

By using Laplace Transform 

       dxeex
r

xxr ξ−−−

ℜ Γ∫
1

)(

1
 = dxex

r
xr )1(1

)(

1 ξ+−−

ℵ
∫Γ

 

 substitute    qx =+ )1( ξ , x=
ξ+1

q
,  dx=

ξ+1

dq
,then 

                                          =
ξξ ++Γ

−−

ℵ
∫ 1

)
1

(
)(

1 1 dq
e

q

r
qr = dqeq

r
qr

r
−−

ℜ
∫+Γ

1

)1(

1

)(

1

ξ
 

                                          =
r

r

r )1(

)(

)(

1

ξ+
Γ

Γ
 =

r)1(

1

ξ+
 

 
3.1.5.11: The  Product  of  Random  Variables  by  using  MIT 

1: Convolution   Algebra   On )(1 ℜL  
The general notion of an algebra is a collection of entries closed under operations that “look like” addition and 

multiplication of numbers .In the context of function spaces (in particular )(1 ℜL  ,which is where probability 

density function live) functions are the entries ,addition ,multiplication by scalars have the obvious definitions , and 
we add an operation that multiplies functions. 
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For linear function spaces that the complete with respect to a norm.,the most important flavour of algebra is a 
Banach algebra with the following properties ,(o multiplaction operator ,which is undefined for the moment,λ  is a 

scalar ,and  is the norm on the space)  

 
                               (1) f o(g of)=(f0g)0h 
 
                               (2) f o (g +h)=f0g+f0h 
 
                               (3) (f +g)oh=f0h+goh 

 

                               (4) λ (f o g)=(λ f)o g +f o(λ g) 
 

                               (5) gffog ≤  

 

Since )(1 ℜL  is not closed under ordinary multiplication of functions ,we need a different multiplication operation, 

and convolution is the most useful possibility. 
 

To verify   closure   , if f, g ∈ )(1 ℜL , 

           fog = dxdxxgxyf )()( −∫∫
ℜℜ

 

                    ≤ dxdyxgxyf )()( −∫∫
ℜℜ

 

                     = dxxgdyxyf )(])([ −∫∫
ℜℜ

 , by Fubini’s theorem 

                     = dxxgdzzf )(])([∫∫
ℜℜ

 

                     = dxxgf )(∫
ℜ

= gf  

             fog = gf     

This verifies the property (5),the norm condition, and is sometimes called Young’s inequality., similarly we verify 

that gof = fg .as well as the convolution algebra is commutative ;f*g=g*f. 

 
For computing the p d f of a product of random variables ,the key results will be that the Mellin integral transform of 
a Mellin convolution is the product of Mellin integral transforms of the convolution functions. 
 

                M[fog]=∫ ∫
∞

−
∞

0

1

0

])()([ dzz
w

dw
wg

w

z
f s  

                            =∫ ∫
∞

−
∞

0

1

0

)(])([
w

dw
wgdzz

w

z
f s  , put y=

w

z
,dy=

w

dz
,dz=wdy 

                            =∫ ∫
∞

−
∞

0

1

0

)(]))(([
w

dw
wgwdyywyf s  
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                            =∫ ∫
∞

−−
∞

0

11

0

)()( dydwwgwyyf ss  

                             =∫ ∫
∞

−
∞

−

0

1

0

1 )()( dwwgwdyyfy ss  

                             =M[f](s)o M[g](s) 
                  M[fog]=M[f](s)o M[g](s) 

                M[f0(g0h)](r,s,p)= dxdydzhgfzyx psr )]0(0[111

000

−−−
∞∞∞

∫∫∫  

                                           = dydzhgzyfdxx psr )0(11

000

1 −−
∞∞∞

−
∫∫∫  

                                           = dydzhgzyfdxx psr )0(11

000

1 −−
∞∞∞

−
∫∫∫  

                                           =M[f}(s)M[g0h}(s,p) 

                        M[f0(g0h)]= hdzzfogdxyx psr 1

000

11 −
∞∞∞

−−
∫∫∫  

                         M[f0(g0h)] =M[f0g}(r,s)M[h](p),  then 
                        M[f0(g0h)] (r,s,p)=M[f}(s)M[g0h}(s,p)=M[(fog)0h}(r,s,p) 
                        M[f0(g0h)](r,s,p)=M[f0g](r,s)+M[f0h](r,p) 
                        M[λ (fog)](r,s)=M[(λ f)og](r,s)+M[fo(λ g)](r,s) 
 

Also the Mellin integral transform of Mellin convolution of nff ......1  is  

                M [ nff ......1 ](s)=M[f 1 ](s)………M[f n ](s) 

     
3.1.5.12: The  Mellin  Integral  Transform  and  relation  with  Laplace  Transform        

        If )(ℜ∈ cMf  for all   ],[ bac ∈ , we  say that )(],[ ℜ∈ baMf ,then we define Mellin  

        integral transform of f with argument  

                          F(s)= M{f(u),s]= duufu s )(1

0

−
∞

∫ ,where bsa ≤≤ )Re(  

 
       The inverse Mellin transform is  

                          F(x) = )]([1 sfM − = dssFx
i

s
ic

ic

)(
2

1 −
∞+

∞−
∫π

 

 

The condition that the inverse exists is that sxsF −)(  is analytic in a strip ),(),( ∞−∞Xba  

such    that  ],[ bac ∈  The mellin integral transform is derived from Laplace integral transforms follows 

                           L [f (t),s]= dttfe st )(−
∞

∞−
∫ , 

substitute      x= te− , t=-log(x), dt= - 
x

dx
,if t=- ∞   then  x=∞  and if t=∞  then x=0 
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                           L [f (t) , s]= dttfe st )()( −
∞

∞−
∫ ,= ))(log(

0

x

dx
xfx s −−∫

∞

 

                                       = dxxfx s )(1

0

−
∞

∫ = M [f(x),s], 

 this  is the Mellin integral transform of f(x) of the Mellin kernel 1−sx ,s>0 is the   
  parameter.   
The inverse Mellin integral transform is 

                            f(x) =  dssFx
i

s
ic

ic

)(
2

1 −
∞+

∞−
∫π

, whenever this integral is exists. 

The some technique is used to obtain the Mellin inversion theorem from the 
 Laplace  inverse 

                           f(y)= )(.)]([1 sfT − = dsesf ys log)(∫
∞

∞−

 

substitute       s= )( c−− η  , ds = ηd− , limits are ∞− ic  to ∞+ ic ,then 

                          f (y)= )(.)]([1 yfT − = ηη η decf yc
ic

ic

log)())(( −−
∞+

∞−

−−∫  

                                                       = ηη η dyycf c
ic

ic

−
∞+

∞−

−−∫ ))((  

                                                        = cy ηη η dycf
ic

ic

−
∞+

∞−

+−∫ ))(  

                                          f (y) cy − = ηη η dyf
ic

ic

−
∞+

∞−
∫ )( = )(* ηf   

 
 
3.1.5.13: Product  od  Random  Variablrs 

Suppose   we  have  random variables  X ,Y with  pdfs  Xf , Yf ,  and  the  product  Z=XY 

determined,  Consider  the  transformation  22: ℜ→ℜψ  given  by  ),(),(),( 2 zxyxxyx ==ψ   Expect  at  

x=0,ψ   is  injective  with  (x,y)= ),(),(
2

1

x

y
xzx =−ψ   and  the  jacobian  of  1−ψ   is  

 

J=

2

3

1
2

1
1

1
2

1
1

1
0

2
1

x

x

z

yy

xx
−

=

∂
∂

∂
∂

∂
∂

∂
∂

−−

−−

ψψ

ψψ

=
2

1

x
 

Then  using  the  multivariate  change  of  variable  theorem,  the  marginal  density  of  Z is  computed  from  the  
joint  density  of  X  and  Y  as 
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dx
xx

z
xf

dx
x

zxf

dxzxfzf

XY

XY

XZZ

22

2
1

1
),(

1
)),((

),()(

∫

∫

∫

ℜ

−

ℜ

ℜ

=

=

=

ψ  

= dx
xx

z
fxf YX 22

1
)()(∫

ℜ

,   

by  independent  of  X  and  Y 

                                                     = )(* zff YX  

 This is   precisely   the  Mellin  convolution  of  Xf   and  Yf   .  In  principle ,  this  plus  the  extensibility  result  

(1)  produces  a  way  of  finding  product  densities for arbitrary   numbers     of  random  variables. 
 
3.1.5.14: Examples 
As  a  simple  illustration  of  the  use  of  the  Mellin  transform  ,  we  use  the  belt  and  pully  example  .Recall  
that X-uniform (1.95,2.05) ,Y-uniform (1.45,1.55) and  we  seek  the pdf  of  product  XY. 
 
The  problem  can  be  simplified  by  using  the  fact  that  a  uniform   ( βα , ) random  variables  can  be  

expressed  as  U)( αβα −+ ,  where  U  is  uniform  (0,1)  random  variable  with  p d f  ).()1,0( xI In  this  case  

,X=1.95+1U,Y=1/45+1U.Then  XY=2.8275+34U+.01U2 .  Since  we  already  know how  to  compute  sums, the  
problem  reduce  to  finding  the  pdf  for  the  product  of two  uniform (0,1) random  variables. 
 

For   Z=U2 ,  the  Mellin  transformation  evaluated  to 
 

              dx
xx

z
fxfzf YXZ 22

1
)()()( ∫

ℜ

= = dx
x2

1
∫
ℜ

= 1]
1

[ zx

−
= -1 +

z

1
 

           =
z

1
-1  , 10 ≤< z  

The   bounds   for   the  integration  come  from  1≤x   and  ⇒≤ 1y zx ≥  

The  result  can  also  be  obtained  as  { } )()]([ 21 xsfuMM −  ,  fu  is  the  pdf  of  u.   

 We    have   M[fu](s)= dxx s ]1[ 1
1

0

−−
∫ = 1

1 −
s

  ,  so  we  need 

ds
s

z

i
s

s
M

sic

ic
22

1

2

1
)(

1 −∞+

∞−

−
∫=









π
 

 
In  this simple  case  of  the  product  of  two  uniform (0,1)  RVs  it  is  easier  to  compute  the  Mellin  convolution  
directly,  but  the  use  of  Mellin  transforma  allows  computation  of  the  pdf  for  the  product  of  n  uniform (0,1)  

RVs  almost  as  early, yielding  
)!1(

1

)!1(

)( 11

−
−

−

−−

nn

z n

 

 
3.1.6. Remarks 
1.Probability  Background  and  Terminology  for  MIT  is  given 
2.MIT  and  Contineous  random  Variable  are  defined 
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3.Probability  Density  Function  for  Contineous  Random  Variable  is  defined 
4.Contineous  Distribution  Function  is  defined 
5.Probabilities  of  Distribution  Function  F(x)  of  a  CRV. 
6. The  derivatives  of  F(x)  is  defined 
7.Expectation  and  Moments  about  origin 
8.Moments  about  Mean,Varience,Skewness  and  Kurtisis 
9.Measure  of  Skewness  and  Kurtosis 
10.Mode, Median, Quartiles, Deciles, Percentiles, QD,CQD, Bowley’s  and  Karl Pearson’s  Method  for  
Coefficient  of  Skewness   
11.Mean  Deviation  from  Mean 
12.MIT  for  sum  of  the  Random  variables 
13.MIT  for  the  product  of  Random  variables 
14.The  MIT  and  relation  with  Laplace  transform 
15.Product  of  Random  variables 
16.Illustrated  by  Exanple 
 

CONCLUSION 
 

We have presented some background on statistics and probability theory and motivated to compute probability 
density functions for sum and multiplication of continuous random variables. The use of the Laplace transform to 
evaluate the convolution integral for the  p d f of sum is relatively simple .The use of the Mellin  integral transform 
to evaluate the convolution integral for the p d f of a product is known in the theory of integral transforms. 
 
The use of the Laplce integral transform for some of the random variables is mostly used and explained in every 
advanced statistics text, now brief theory of Mellin integral transform for statistics and probability   is   given in this 
paper .It seems for any statisticians,  mathematicians and engineers  will also take interest in developing  Mellin 
transform  with statistics and probability.   
 

REFERENCES 
 

[1]  Derek Naylor,  Journal of Mathematics   and Mechanics, (1963) vol.12, No.2  
[2]  Ian N. Sneddon ,The use of Integral Transforms ,TMH edition 1974 
[3] A.H.Zemanian Generalized Integal  Transformation ,Interscience Publication, New York   , (1968)  
[4] .A.Z. zemanian , J. SIAM     Vol.14.  No . 1. J an. 1908 Prited in  U.S.A.  
[5]  I.S. Reed , The Mellin Type Double Integral ,Cambridge ,London  
[6]  Dave Collin ,,dcollin@unrn.edu 
[7]  Aldo Tagliani, Applied   Mathematics  and  Computation  118  (2001)   151-159 
[8]  Aldo Tagliani, Applied   Mathematics  and  Computation  123(2001) 275-284 
[9]  Aldo Tagliani, Applied   Mathematics      and   Computation ,130  (2002)  525-536  
[10] S.M.Khairnar, R.M.Pise,J.N.Salunke,,International  J.of  Multi  displ. Research &   Advacs  in  Engg(IJMRAE)  
Vol.!,     No.1,Nov.2009,pp 213-234 
[11] S.M.Khairnar, R.M.Pise,J.N.Salunke,   In   International  Journal  Of Mathematical   Sciences And  
Applications (IJMSA)     Vol  .  1  No. 1 (Jan 2011)  pp.  1-17     
[12] S.M.Khairnar, R.M.Pise,J.N.Salunke, Int.  J.  Theorotical  And  Applied Physics,Vpl.1, No.1.    (Nov.2011) pp  
11-2814..  
[13] S.M.Khairnar, R.M.Pise,J.N.Salunke, Int.  J.  Theorotical  And      Applied   Physics,Vpl.1, No.1. (Nov.2011) pp     
63-78 
[14] F. Woldesenbet,  H. Gupta ,  P.  Sharma,  Archives of Applied Science Research ,  Vol.  04,  2011,  pp  524-535 
[15] S.  Chaterabory ,  H.  O.  Sharma, Archives of Applied Science Research ,  Vol.  03,  Issue -06,  pp 333-342   
 


