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ABSTRACT

The Fourier integral transform is well known for finding the probability densities for sums and differences of
random variables. We use the Mellin integral transforms to derive different propertiesin statistics and probability
densities of single continuous random variable. We also discuss the relationship between the Laplace and Mellin
integral transforms and use of these integral transforms in deriving densities for algebraic combination of random
variables. Results areillustrated with examples.
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INTRODUCTION

The aim of this paper , we define a random eigRV) as a value in some domain , day, representing the
outcome of a process based on a probability lawghB information above the probability distributiove integrate
the probability density function (p d f)in the caxfehe Gaussian ,the p df is

1 X-m
f(X): 1 E_E(T)Z,—OO < X <o

o~ 2
when [ is mean ands” is the variance.

We define the p d f for X+Y and XY ,where X andaye the R Vs, by using the brief background on abdky
theory and see the convolution by using LaplaceeliMintegral transforms.

In this paper we define Mellin integral transfo, continuous random variable for X and its f$ d, continuous
distribution function, expectations and momentsuatorigin and mean for independent CRVs X, modeedian
, Quartiles , deciles , percentiles , skew ndssysing mean and mode and also by using itegrt kurtosis (by
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using moments) Transform for the sum of the random variables, @tution Algebra orLl(D) .- The Mellin

integral transform, and relation with Laplace imsddransform relation in between expected valugsrmoments of
CRVs X ,one dimensional continuous random varialé its p d fs , marginal density functionkedrems of
addition and multiplication of CRVs X and Y, retats in between expected values of CRVs X and & aellin
integral transform.

3.1.2: Terminology
To avoid confusion, it is necessary to rimnta few cases in which the terminologyedisn probability
theory * "Distribution”,( or “law”) in probaliity theory means a function that assigns peobability

O< p<1 to every Borel subset of] ;not a “generalized function” ,as in theh@artz theory of
distribution.

* For historical reasons going back to HeRoincard , the term “ characteristic fuanti in probability
theory refers to as integral transform of pad f, not to what mathematicians usuallyereto as the
characteristic function .For that concept ptolity theory uses “ indicator function “ ,symlized I; e.g.

| 1 (X) is 1 for XJ[O1] and O elsewhere .In this paper as will nee the term “characteristic function

at all.

*We will be talking about p dfs being ihl(D) ,and this should be taken in the ordinargthematics
a sense of a function ohl which is absolutely integrable . More conmiyo, probabilists talk about
random variables being int,L? , etc.

2
Which is quite different -in terms of a f§d, it means thatﬂxlf(x)dx,“xl f(X)dx, etc exist and are
finite. It would require an excursion into aserre theory to explain why this makes sensuffice it to
say in the latter case we should really sayething like "L'(Q, F,P)" , which is not at all the same

as L'(0O).

3,1.3: PROBABILITY BACKGROUND
Probability theory starts with the idea of theomme of some process , which is mapped to a ho¢he.[] )by a
random variable say X ,we just think ®f(][]

As a ‘realization’ of X , with a probability lawrdistribution which tales us how much probabiliyassociated
with any interval [a ,b[] [J .How much is given by a numb@< p<1

Formally , probabilities are implically defindxy their role in the axioms of probability theieA probability
law in [J can be represented by its density or p d f which continuous function f(x) with the probabilityat the

b

probabilities of finding x in [a , b] i.d?(x [ &, b]) =j f (X)dx it gives the probability “mass” per unit length
a

,which is integrated to measure the total mass imtrval .

We define characteristics of a probability measqmd’
l:forany[a ,b] Q< P(xO[ab]) <1
JPIX D (~e0,00)] =1
2 flablnlcdl=¢ o P(xO[ab]ncd]) = P(xO[ab]) + P(xO[cd])

From these properties and general properties efjiat it follows that is f is a continuous p d,fthen f (X) = 0
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and j f(x)dx =1

For any RV X ,with p d ff, it meanX = MU= I xf (X)dx ,,this is usually designated by E(X),the expectatio

expected value of X ,the variance of X is

E{(x-1)?]_ T (x= 14)? f (x)dx

A frequently used modes for such RVs is the Meliiistribution , with p d f.

r(r)

parameter .We see expectation ,mean , variancenems ,mode, median , skew ness , kurtosis ,etc.

1 - T -
f(x)= —— X"7'e™* ,if x>0,0 otherwise ,wheh (r) =j X" 'e”dx where X" is the Mellin kernel foe r>0 is a
0

Independence is profoundly important in probabilipeory ,and is mainly what saves probability frdming
‘merely’ an application of measure theory .For fhepose of this paper , an intuitive definition fiads :two

random variables X , Y are independent if the o@mure or nonoccurrence of an evedtl1[a, b] does not affect

the probability of an evenlY [J[a,b] and vice versa .Computationally ,the implicatisnthat “independence
means multiply” i. e. if X ,Y are independent,

(xOla b & yO[ab]) = P(X U[a b]P(Y Ufa,b]

In this paper , we will only consider independBMs .If X ,Y are RVs ,by substitutinb_oo’oo] for either of the
intervals of integration , it is seen that

b

[ 1000k[ ,0dv=[ [ 1,008, (ekay=] [ £ (x )y

E T fooypaay=[ [] t0xydylax=] [[ f,(9dx

where f, (X) = .[ fy (X, y)dy this is true andf, (Y) is the marginal density of Y.

—00

3.1.4: Preliminary Results
3.1.4.1: Dfefinitions

The Mellin integral transform of the function f(wjth its kernelX" " and r>0 is the
parameter , is denoted by M[f(x),r] and defined as

M [f(x), r]f X' (X)dX,0<x< r>0,
0
whenever this integral is exist. This is an ampnt integral transform ,whose use in statisticselated to

recovering of probability distributions, product guotient of independent nonnegative continuousdoen
variables.
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One of the main problems arising in the applicaias that of inverting Mellin integral transform,i. e. the
determination of the original function f(x) fromethransform

M [f(x), r] .This problem , formally solved by thieverse formula
C_ioo
f(x)? j X""M[ f (X)mr]dr ,can not be solved ,in most of cases, analytic@ierefore
C-ico

the only possible of inverting the transformed timws is by numerical means.

3.1.4.2: Continuous Random Variable
If X is anrandom variable which can také values (1 .e. infinite number of valuem )an interval , then
X is called acontinuous random variable.

Its probability distribution is known asntinuous probability distribution .
If function f(x) is said to be a functiorf @ntinuous random variable X ,if it satésdfi the following
conditions

@ f0=0  and (2)[ f(x)dx =1
3.1.4.3: Probability Density Function of Contiuous Random Variable

A continuous function y=f(x) such that
(1) f (®) integrable

b
() f(dx =1 if X liesin [a b] and

B
(3ﬁ f(X)dx=P(a <x< f),wherea<a <f<b is called

probability function of a continuous random variable X.
Thus for a continuous randariable
b

[ f09dx =P(a < x< £)

a

B

CIearIJ f(X)dx represents the area under the curve f(x)x;theis
a
and the ordinatesck=and x=3

3.1.4.4: Continuous Distribution Function
Probability distribution of X or the proballidensity function of X helps os to
find the probability that X will be withingiven interval [a ,b] i.e.

Plasx< b)—i f(x)dx,

other conditionsrgesatisfied.
If X is a continuous random variable , havihg probability density function f(x)
then the function

w@:WXszffmm

—00
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P(X)zP(sz):T f(x)dx ~w<Xx<o

is called distribution function ocumulative distribution function of the continuousrandom variable X.

3.1.4.5: Probabilities of Distribution Function F(x) of a Continuous Random
Variable
1: The function F(x) is defined for every real numker
2: since F(x) denotes probability and probability dfes between o and 1

0<F(x) <1
3: F(x) is a non-decreasing function which means if
Xa % F(X)<SF(X)
3.1.4.6: The Derivative of F(x):

F(x) exists at all points (except perhaps at mitefnumber of points) and is equal
to the probability density function f(x),

F(x):%f(x):f(x)zo

Provided derivative exists.
If F(x) is a distribution function of a continuotendom variable then

P(as<x<b)=F(b)-F(a)

3.1.5: Main Results
3.1.5.1: Expectation and Moments about origirby using MIT
DMIT
The expectation of continuous random variable denoted by E[X] and defined as

E[X] :_[ xf (x)dx
For the Mellin Integral Transform the ProbipiDensity Function is

1 r-1.,-x
f(xX=——X "7, r>0
(X I'(r) r

where X' is the Mellin kernel. thenJ. f(x)dx =1

For the Mellin Transform

T f(x)dx:T %xr*e‘xdx:ﬁw X" te~dx
£ [

=1, where j f(x)dx =1

—00

r
Iff(x):l_i " isthe function of continuous random varia%|e¢hen
r
M [f(x). s]:j X (x)= j X le*dx = j X" le*dx

o (1 ) rr)o
E:l:ﬂxo
r(r)
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M [f(x), s] =1, is the moment about origirdenoted bW('), ,ucl):l

E[X] J'xf(x)dx '[xfl 1 exax=—t [ xevdx

(r) T 2,
T r+1 1 —x (r +1)r(r) !
! F(r +1):T:(r+1):ﬂ1

EXI=44=(r+1)

0

E[X]-j X (x)dx jx L terge LT ekt

r(r TN 4
__T Xr+1e—xd)(:ioo Xr+2—le—xdX
) o r(r) ¢
[(r+2) _(r+(r+2)r(r)

=(r+1)(r+2)= 1

r(r) r(r)

EIX |= 4, =(r+1)(r+2)
3 K 3 T 3 1 r-1.-x 1 T 3 1
EX]=| x’f(X)dx=| x> ——x""e"dx=——| X°X
sl p ey |

00

XX e dx

Gk
F(r+3) _(+)0++3r()_ -
_F(r) = 0 =(r+1)(r+2)(r+3)= Uy

EIX 1= 1, =(r+1)(r+2)(r+3)

a7 4 T s 1 r-1,-x 1
EX]=| X" f(X)dx =| X" ——x""e"dx x*x e ™*dx
{ ! r(r) (Ir)I

J' Xr+4—1e—><dX
0

L
r(r)

C(r+4) _(r+1)(r+2)(r +3)(r +Ar(r)
) r(r)

=(r+1)(r+2)(r+3)(r+4) 2,

EIX 1= 4, =(r+1)(r+2)(r+3)(r+4)

3.1.5.2: The Mellin Integral Transform and Moments (Moments about origin)

If Xis a cintineous random variable, thba expectations are as follows

LE[X )= [ X ()AEMII00.0) = =1
0
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2E[x']=[ X' f(x)dx=| Xr(”'lf(X)dX:M[f(x),r+1]: My =(r+1)
0 0

3 E[x"]= j X (X)dx = j XL (X)AX =M. r+2] = L, =(r+1)(r+2)
0 0

0

4:E[x”2]:j X2 f (X)dx = I XL (X)OX =MIF(X).r+3]= L1 =(s+1)(s+2)(s+3)
0 0

5:E[x"*%] = j X3 f (x)dx = j X" 4L (X)X =MIf(x),r+4]
0 0
=, =(s+1)(s+2)(s+3)(s+4)

1
If f(x) :m is the function of continuous random variable, tkfen
S

6:E[Y"™] =T y=H f (y)dy =MIf(y).1l= f,0=1
0

7:E[Y"] :I y°f (y)dy:I >25+1'1f (X)AX =MIf(y).s+1]= 44, =(s+1)

8:E[Y"™] =T y=f (y)dy :T y* 2 (y)dy =MIf(y) s+2] = 1, =(s+1)(s+2)
0 0

9:E[Y”2]:T y“zf(y)dy:T y T (y)dy =MIf(y) s+3]= fys =(s+1)(5+2)(s+3)
0 0

0:E[Y ™= [ y**f (y)dy =] y***f (y)dy=Mif(y).s+4]
0 0
= [, =(s+1)(s+2)(s+3)(s+4)

3.1.5.3: Moments Abour Mean , Variance , Skewss and Kurtosis
The varience of the random variable X is dentted (X) and defined as
1: Varience of X=V(X)

=E[(x-m)= E[X " HE[X) ~ =H2
- ' "\2
e = Ho = (Ha)” a1y re2)re1) = 1)(r+2-1-1)

V(X) =(r+1)8,,
The other moments about mean are obtainéth vslations in between moments
about a origin and moments about mean.

oMz = Hrs = 3ok +2(1y)°
=(r+ BR)(r+3)-3(r+ 1) (r+2) (r+1)+2(r+1}
:(r+:lr){2)(r+3)-3(r+l)(r+2)+2(r+1§ ]
Dy FOr 63" —Or —6+2r* +4r +2)

/’1X3 :2(r+ 1)
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aHxa = Hra = Aath + 6L (1) " = 3(4a)"*
:(r+1)(r+2)(r+3)(r+4)-4(r+1)(r+2)(r+3)+1)+6(r+1)(r+2)(r+1)2 -3(r+1)4
" +(r2+7r +12-4(r +2)(r* +4r +3)+6(r +2)(r> +2r +1) = 3(r> +3r> +3r +1),
S(re1)(FoHTr2 4120 +2r% +14r + 24 4r® —16r° —12r —8r® -32r - 24
L6r°+12r2 +6r +12r% +24r +12-3r> -9r* -9r - 3)
=9(r+1)
H,,=9(r+1)

3.1.5.4: Measure of Skewnesﬁ(i yl)
Karl Pearson’s defined the four coefficieldésed on moments about mean
These are used to measure the skewnessigogik
By using the moments about mean , we define thkR&arson’s skewness and as follows

/,uz /8(r+1)2 [8
skewness J-le\/ﬁl: ,U_z’: r+1)° = R

If 3, =0 , the distribution is symmetric

If 3, <0 , the distribution is negative skew

If 3, >0 , the distribution is positive skew

For r=1 to n ,,6’1 >0 ,the distribution is positive skew for Me integral transform.

3,1.5.5: Measure of Kurtosis (,,V,)
M5, D) 9
My (r+D? o r+l

(1) 1fy,=0, the distribution is normal or mesokurtosis
for [3,=3 when r=2

Ify, >0, the distribution is more peaked or leptokusosi
for [3,>3 when r=1

Ify, <0, the distribution is more flat or platykurtosis

for 8,<3 whenl 23

Kurtosisy, =, —3

3.1.5.6: Mode

d
If f(x) be a function of continuous ramd variable X ,thend—y =f'(x)=0
X

d?y
[_2 X=Xy

x", and if OX <0 , then

We get values of X i.g.(l,XZ,....,
X =X is the mode

1 .
If f(x):me *x"™" be the contineius function of random vaeal, then
r

109 = (X ) + (=X e
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:%[Xr—l(_e—X)_i_(r _1)Xr—2e—><]
_Xr—2e—><
T

r-2 —X

X'e
r(r)
f(x)=0 , then
-X+r-1=0
x=r-1, is the point

[-x+(r-1)]

[-x+r-1]

f'(x)= _r((ar) [-X"+(r =D)x"?]+ re (r) [-(r =)x" +(r =1)(r —2)x"]
_ e—x r-1 _ _ r-2 _ _ r-2 _ _ r-3
_F(r) [x (r=Dx (r=Dx"“+(r-(r-2)x~]
:% XX = 2(r ~1)x+ (r ~1)(r —2)]
-(r-1)
[ f"(X)]x:r-f% (r=)"°[(r -1)* =2(r =)(r =Y +(r -(r -2)]
_e_(r_l) VI3[ _1\2 _ 2 _ _
0 (r="[(r =" =2(r =" +(r =D(r -2)]
-(r-1)
0 (r="[~(r =" +(r =1)(r -2)]
-(r-1)
:I'(r) (r=D"[(r =D(r —2-r +1)]
_e—(r—l) r-3
0 (r=0)"[~(r -1)]
_ e—(r—l) -2
T r(r) (=9
[ (0] e

Then f(x) is maximum at x=r-1
The value of the mode is r-1
Mo=x=r-1

3.1.5.7: Median , Quatrtiles , Deciles, ercentileQD., Coeff. Of QD, Bowley’s
Method , Karl Pearson’'s Method fo Coeffg.pf Skewness
1 —X, -1 ; i i
If f(x)= me X' be a function of continuous random variakfle and
r

M
1

j f(X)dx=E, then M=Md is said to be Median

0
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M M
I i e¥dx == thenJ. ix"le'xdx:E
o () o ()
M —l —x M r-1,—M
5 l'(r) 2 o () 2
M r-1 -1 2
e™> ML en e‘“"['vI +1+M+M—+———]:1
o (r) 2 ) il 2! 2
-1 2
M e MM L
I (0) 1 2! 2
e™MM l+e“"eM:% then €™M 1
Y = M -1
e"M = then € " =—M
2 2
2 —
1-m+ M oLy
2 2
Comparing first term on both sides
:_—]'M then
2
Md=-2 ,this is the value of the Median
Q1=Quartile N0.1=-4
Q3=Quatrtile No.3:_—
Q =—" where r=1,2,3
r
P =10 whetre r=1, 2, --,9
r
_4+4

Q3-qQ_3 "4 4

Quatile Deviation=Qb= = =

2 2 3
-4 8
—+4 =
Coefficient of QDQ Ql = 3 :—1:-0.5
Q3+Ql -4_, -16 2
3 3

Bowley's Method

Skeness =2(Md)-Q1-Q3= 2(421)4‘1 :g

Coeff.of Skewness gMd) QL-Q3
Q3+Q1
o-2)+a+2 4
3_.3_1_
Y g 5 0°
—+4 — 2
3 3
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Kalpearson’s Method
Skeness=Mean-Mode =r+1)@r+1-r+1=2

Coeff. Of Skewness—= _ mOde: (r +1) - (r _1) = 2
std r+1 r+1

where >rl.1

3.1.5.8: Mean Deviation from Mean
If X be a continuous randon variabl thes |i .d. function if

ie—x r-1
f(x)= r(r)

MDHx x\f(x)dx Hx x\ “0° e x" L dx

W oa Xyl —X r—ld _00__x r—ld
‘ ><1e X :r(r)[jxe X' dx {xe X' dx]

e x " dx - xj e *x"dx] :%[I’(rﬂ)—;d'(r)]

o |
il

%[(rﬂ)r(r) () 8[r+1 X

MD =r+1-x . .
where r is positive
3.1.5.9: Probability
If F(X)=— f(X) and f(x) =0 then

P(asx< b) =F(b)-F(a) or
P(a<x<h) :.tf f (X)dx :.tf X" (x)dx
For Mellin Integral Transform
PO< x< )= T X" (x)dx, where

0

—X

e
f(x)=
r(r)

is the continuous .function then

P(O< X< )= _[ F X e ™dx =1

3.1.5.10: The Sum of Random Variables bysing MIT
Suppose that the RV X has p dff (X) and Y has p d ff, (y) and X and Y

are independent .Consider the transformat;dth2 - 0?2 given by
W(xy) = (xx+y)=(x2)

Scholars Research Library
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If we can determine the joint density funatif,, (X, Z) ,then the marginal density

function f,(2) :j foy (X, z)dx:j f.o [ 72 (x, 2)]dx

3( f. (X, Z = X)dX :j f (), (z-2)dx ,
0 0
where X and Y are independent

£, * (2

Thenest-to-last line above is intuitive it says thatfind the density for Z=X+Y by integrating tjent density of
X,Y over all points where X+Y=Z .i.e. Y=Z-X.

By using the Fourier transform [7]

J’ 1 = % —1e—xe—2mfxdx — 1 J’ X' 1e—(1+2mf)xdx
5 () rr)g
substitute (1+274&)X =q x= g dx= dq — ,then

1+27& " 1+27€&
:1 J q )r—le—q dq
r(r); 1+27¢é 1+ 27ié

_1 1 J' q e dq
0

r(r) (L+27i8)"
1 r(r)
r(r) @+ 27i¢)"
_ 1
A+ 277 &)

By using Laplace Transform

r-1,4-x

—— x"ee¥dx =———

) ¥

q dx= dqg

1+¢& 1+¢&
g7 d 1 1 -1, -q

r(r)I (135) 1+q5 rn ¢+ ) | atedg

1 1

F(r) @+&)"  @+&)

3.1.5.11: The Product of Random Variables bysing MIT

1: Convolution Algebra On L*(0)
The general notion of an algebra is a collectiorewtries closed under operations that “look liketiéion and

r 1 —(1+{)xdx

I r(r)

substitute (1+ )X =, x=

then

multiplication of numbers .In the context of furgeti spaces (in particuIaLl(D) \which is where probability

density function live) functions are the entrieddiion ,multiplication by scalars have the obviaedinitions , and
we add an operation that multiplies functions.
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For linear function spaces that the complete wibpect to a norm.,the most important flavour okhtg is a
Banach algebra with the following properties ,(oltiplaction operator ,which is undefined for the ment,A is a

scalar ,anc" || is the norm on the space)

(1) f o(g of)=(f0d)0
(2) f o (g +h)=fOPk
(3) (f +g)oh=fOh+goh

@) (fo g)=(Af)o g +fo(Ag)

@fog| <f[o]

Since Ll(D) is not closed under ordinary multiplication of &tions ,we need a different multiplication operatio
and convolution is the most useful possibility.

To verify closure , if f, ¢1 L*(0),

| fog| :j j f(y- x)g(x)dx{dx

o b

<[ [ [f(y=»]g(axy

:j [ j | (y = x)|dy]|g(x)|dx , by Fubini’s theorem
{1 |1 (2)dz]g(x)]dx
91 tllaGildx=| [l

| foa =l
This verifies the property (5),the norm conditiand is sometimes called Young's inequality., simhjlave verify
that ||gof || :"g”” f || .as well as the convolution algebra is commutgfiige=g*f.

For computing the p d f of a product of random ablés ,the key results will be that the Mellin gria transform of
a Mellin convolution is the product of Mellin inted transforms of the convolution functions.

miog 1] 1()gw) 1z dz

T L7y sa dw z dz

f[ j f(5)z5 dz]g(w)— , put y=—,dy=— dz=wdy
oW W wow

FI[ £ () om)= waylg(w) 22

00 w
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£ £y~ wg(w)dydw
00

Fy £ (y)dy[ wg(w)dw
0 0

=MI[fl(s)o M[g](s)
M[fog]=MI[f](s)o M[g](s)

M[fO(gOh)](r,s,p)f j j X" tys1zP[ f 0(gOh)]dxdydz
0 0 O
J':x"lfdxj' I y*'zP*(gOh)dydz
0 0 0

j:xr‘lfdxj j y**z"™(gOh)dydz
0 0 0
=MI[f}(&l[gOh}(s,p)
M[fO(gOh)]:_{ X Lyst fogdxj j 2" hdz
0 0 0
M[fO(gOh)] =M[fOg}(r,s)M[I{p), then
M[fO(gOh)] (r,s,p)=MI[f}(s)MOh}(s,p)=M[(fog)Oh}(rs,p)
M[fO(gOh)](r,s,p)=M[fOg]&)+MI[fOh](r,p)
M@ (fog)](r.s)=M[(A Nog](r.s)+Mfo(A g)I(r.s)
Also the Mellin integral transform of Mellin conuglon of f,......f_ is

M [f......f 1(S)=MIF 1(S)......... MIf . 1(s)

3.1.5.12: The Mellin Integral Transform and réation with Laplace Transform
if f OM_(O) forall cO[a b], we saythatf M, (1) ;then we define Mellin

integral transform of f with argument
F(s)= M{f(u),s]j; us* f (u)du,wherea < Re(s) < b
0

The inverse Mellin transform is
F) M [ F1(s) :i_ J' XF(s)ds
27T

C-ioo

The condition that the inverse exists is tiafS) X is analytic in a strip(a, b) X (=0, )
such thatc[d[a, b] The mellin integral transform is derived from Lapé integral transforms follows

L[f (t),s]:j e f (t)dt,
. ~ dx . .
substitute  x€ °, t=-log(x), dt= -— ,if t=-00 then x=00 and if t=c0 then x=0
X
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Lﬁayspi(e*ff(odt;j fﬁ(—ngxiik)

[xe £ (9 dx=m 110).5],
0

this is the Mellin integral transform of f(x) tie Mellin kernelx®™,s>0 is the
parameter.
The inverse Mellin integral transform is
c+ico
f(x) =—— I X °F(s)ds, whenever this integral is exists.
C—ioo
The some technique is used to obtain the Mellieision theorem from the
Laplace inverse

OFTONS)= [ Tio)e™ s

substitute  s= (/7 —C) ,ds =—d7, limits areC —ico to C +ioo,then
C+ioo

FOFIFOIY)= | f(-7-c)e"dy

= [ T(=tr-c)yydy

C+ioo

=y [ f(n+0)y”dn

C+ico

fyre= [ fy dn=1"()

C-ioo

3.1.5.13: Product od Random Variablrs
Suppose we have random variables X ,Y witlfs pfﬂx , fY, and the product Z=XY

determined, Consider the transformatigh: (1> — (0% given by (/(X, y) = (X,X*Y) = (X,2) Expect at

x=0,{ is injective with (x,y)#/ (X, 2) = (X,lz) and the jacobian off " is
X

0w | | -2z

1= ox Ox | _ x3 _1
ou 0|1 |
dy oy x?

Then using the multivariate change of vasgaltheorem, the marginal density of Zis cated from the
joint density of X and Y as
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f,(2) =j f. (X, Z)dX

O

=[ 0 @ (6 2) o
0 X

= [ (0 2) 5

! X" X

z, 1
=] 0 (5) X,
< XX
by independent of X and Y

=f* 1 (2
This is precisely the Mellin convolution ofx and fY . In principle , this plus the extensililitesult
(1) produces a way of finding product deasifor arbitrary numbers of random varésbl

3.1.5.14: Examples

As a simple illustration of the use of tMellin transform , we use the belt andlpuxample .Recall
that X-uniform (1.95,2.05) ,Y-uniform (1.45,1.55)ch we seek the pdf of product XY.

The problem can be simplified by using flaet that a uniform , /() random variables can be

expressed ag¥ + (S —a)U , where U is uniform (0,1) random variabtéth p df | 4, (X).In this case
X=1.95+1U,Y=1/45+1U.Then XY=2.8275+34U+.0fU Since we already know how to compute suhes,
problem reduce to finding the pdf for theoguct of two uniform (0,1) random variables.

For Z:UZ, the Mellin transformation evaluated to

L@D=[ (D) k=] Sdk=[= a4t
x?" x? x> X z

O O

:l-l ,0<z<1
2

The bounds for the integration come frofEl and y<1= X212
The result can also be obtained I‘s(ls'l{M[fu](sz)}(X) , fu is the pdf of wu.

-1 , so we need

tn |

1
We have M[fu](s):f [x** -1]dx =
0

L1 1%z
M {?}(S"z—ﬂ [ Fo

In this simple case of the product of twoiform (0,1) RVs it is easier to compute thkllin convolution
directly, but the use of Mellin transformfoas computation of the pdf for the produmt n uniform (0,1)

. . ”(Z—l)n—l 1
RVs almost as early, yielding -
(n=-1)! (n-1)!

3.1.6. Remarks
1.Probability Background and Terminology forlTMis given
2.MIT and Contineous random Variable are rosi
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3.Probability Density Function for ContineoBandom Variable is defined
4.Contineous Distribution Function is defined

5.Probabilities of Distribution Function F(Oof a CRV.

6. The derivatives of F(x) is defined

7.Expectation and Moments about origin

8.Moments about Mean,Varience,Skewness andidiaurt

9.Measure of Skewness and Kurtosis

10.Mode, Median, Quartiles, Deciles, Percentilef), @D, Bowley's and Karl Pearson’'s Method for
Coefficient of Skewness

11.Mean Deviation from Mean

12.MIT for sum of the Random variables

13.MIT for the product of Random variables

14.The MIT and relation with Laplace transfor

15.Product of Random variables

16.lllustrated by Exanple

CONCLUSION

We have presented some background on statisticpenimhbility theory and motivated to compute praligb
density functions for sum and multiplication of tomous random variables. The use of the Laplamestorm to
evaluate the convolution integral for the p d saf is relatively simple .The use of the Mellinteigral transform
to evaluate the convolution integral for the paf & product is known in the theory of integrahisforms.

The use of the Laplce integral transform for sorh¢he random variables is mostly used and explaineglvery
advanced statistics text, now brief theory of Mellitegral transform for statistics and probabiliig given in this
paper .lt seems for any statisticians, mathenaaticiand engineers will also take interest in dgiey Mellin
transform with statistics and probability.
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