
Available online at www.scholarsresearchlibrary.com 
 

 
 

 
 

 

Scholars Research Library 
 

Archives of Physics Research, 2012, 3 (3):165-174  
(http://scholarsresearchlibrary.com/archive.html) 

 

 
ISSN : 0976-0970 

CODEN (USA): APRRC7  
 

165 
Scholars Research Library 

Study of the vibrational spectra of H2S and H2O
16 : An algebraic approach 

 

Nirmal Kumar Sarkar*1, Joydeep Choudhury2 and Ramendu Bhattacharjee2 

 

1Department of Physics, Karimganj College, Karimganj-788710, India 
2Department of Physics, Assam University, Silchar-788011, India 

______________________________________________________________________________ 
 

ABSTRACT 
 

Using the algebraic model, in this work a study of the vibrational spectra of H2S and H2O
16 has been reported. To 

give a deep insight into detailed spectroscopy for these bent XY2 molecules, the inclusion of intermode couplings in 
algebraic models has been addressed. The aid of a new set of improved algebraic parameters to achieve improved 
RMS deviations also has been studied for these bent XY2 molecules.  
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INTRODUCTION 
 
Since its inception, molecular spectroscopy has been an area of active interest from many stand points. This branch 
of Physics has been playing an essential role in both experimental and theoretical approaches to understand an 
enormous number of important problems of physical science as well as many other scientific areas. Importance of 
molecular spectroscopy has been revealed due to the interplay between quantum theory and experiments. This 
significance along with the continuous development of more powerful experimental techniques has been attracting a 
wider scientific community to the field of molecular spectroscopy. At present, molecular spectroscopy is going 
through an exciting time of renewed interest. 
 
To maintain resonance with the rapid advancement of the experimental observations, theoretical physics is also 
constantly being tested to provide the satisfactory models that can account for the observations in its befitting 
manner. In this regard, it may be noted here that as a consequence of these new and quite often unexpected 
experimental results, an unprecedented effort towards constructing alternative theoretical models has been taken 
place in recent years. In the study of the molecular spectroscopy, these alternative theoretical models can act as 
concrete and complementary techniques to the traditional approaches. One such recently launched successful 
alternative theoretical model in the study of molecular spectroscopy is the algebraic model.     
 
The algebraic approaches to complex spectra already have been proved useful in the fields of spectroscopy. Very 
detailed and yet simple description of complex rotation – vibration spectra[1] in nuclear physics has been well 
described using the algebraic approaches. We may thus expect that the similar techniques may also provide a 
relatively simple way to describe the rotation – vibration spectra in molecular physics. 
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It may be noted here that the algebraic approaches already have been used in molecular physics also. C. E. Wulfman 
and R. D. Levine studied[2] the ideal case of a  one – dimensional   Morse   oscillator,   whose   energy   levels   can   
be   written  in   the  form  
                    
                                                     E(n) = - A( k – n )2                                                       (1) 

 
where k the total number of bound states, n the vibrational quantum number(n = 0, 1, ………., k) and A is a 
constant. When an auxiliary label m(= k – n ) is introduced, the expression (1) can be written as  
 

E(m) = - Am2.                                                              (2) 
 

Wulfman and Levine described the spectrum generating algebra(SGA) for this problem as  SO(3) ≈ SU(2). Using 
this ‘dynamical algebra’, Wulfman and Levine calculated several properties of the system. 
 
In the light of the above study of Wulfman and Levine, later, it was proposed by Iachello[3] that it is possible to 
construct an SGA or ‘dynamical algebra’, to describe(within a certain approximation) the realistic rotation – 
vibration spectra in three dimensions. The algebra proposed by Iachello is U(4), the algebra of the unitary group in 
four dimensions. From the group theoretical point of view, this algebra is on one hand, the simplest extension of the 
Wulfman – Levine algebra U(2), and on the other hand, a simplification of the algebra, U(6), of nuclear rotation – 
vibration spectra. It may be noted here that in general it is possible to construct[3] SGA of rotation – vibration 
spectra in r dimensions by making use of the groups U( r + 1 ). In this regard, it may be seen that the Wulfman – 
Levine algebra corresponds to r = 1, the algebra we shall use in this study corresponds to r = 3 and the algebra 
reported in reference[1] corresponds to  r = 5 [4].  
 
As a concrete and complementary technique to conventional approaches, the algebraic models already have been 
proved successful in the study of the vibrational spectra of small and medium-sized molecules[5-6]. Some 
triatomic(linear),  tetratomic(linear) and large molecules we studied[7- 18] earlier using the U(4) and U(2) algebraic 
models. In this work a study of the vibrational spectra of the bent XY2 molecules H2S and H2O

16 has been reported 
using the U(4) algebraic model. To give a deep insight into detailed spectroscopy for these bent XY2 molecules, the 
inclusion of intermode couplings in algebraic models has been addressed. In this study, the aid of a new set of 
improved algebraic parameters also has been reported to achieve improved RMS deviations for these bent XY2 
molecules.  
 
2. Review of the theory  
The theory of the U(4) algebraic model[5-6,19]  to be used in this study for the approximation of bent XY2 
molecules has been discussed below in detail. 
 
2.1  Coupling of bonds in the algebraic theory[7, 15] 
To  study  the  vibrational  spectra  of  triatomic  molecules, in  the  algebraic  models  there are  two  main  ways  in  
which  the  bonds  can  be  coupled [6] 
 
U1(4)⊗U2(4)⊃O1(4)⊗O2(4)⊃O12(4)⊃O12(3)⊃O12(2)                                 ( I ) 
                                                                                                                                         ( 3 ) 
U1(4)⊗U2(4)⊃ U12 (4)⊃O12(4) ⊃ O12(3)⊃ O12(2)                                      ( II ) 
 
Which  correspond  to  local  and  normal  coupling  respectively. For  these  two  situations  the  Hamiltonian  
operator  can  be  diagonalized  analytically. 
 
The  local  basis  is  characterized  by  the  representations  of  chain I [5-6], 
 

             
                                                                                                                                                                       ( 4 )            
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The  numbers  N1,N2  are  the  vibron  numbers  of  each  bond. The numbers ω1,ω2,τ1,τ2 are related to the 
vibrational quantum numbers and J, MJ represent the usual angular momentum quantum numbers[15].  
 
2.2   Local-mode Hamiltonian for bent triatomic molecules 
For bent triatomic molecules we can construct the local mode Hamiltonian[2, 5-6, 19] as 
 

Hlocal = E0 + A1C(O(41)) + A2C(O(42)) + A12C(O(412)) + A 12| C (O(412))|  
             +  BC(O(312))                                                                                                   ( 5 )  
 

In  Equation (5)  E0  is  the  zero of the energy scale,  A1, A2, A12, and A 12   are  the algebraic parameters, C(O(41)), 

C(O(42)), C(O(412), C (O(412), and C(O(312)) are the bilinear Casimir invariants corresponding to the groups in 
chain I(Equation 3), and B is the rotational constant. 
 
The   eigen  values  of  the  bilinear  Casimir  invariants  corresponding  to  the  groups  in 
chain I(Equation 3) are given by 
 
C(O(41)) → ω1( ω1 + 2 ) 
 
C(O(42)) → ω2( ω2 + 2 ) 
 

C(O(412)) → τ1( τ1 + 2 ) + τ 2

2
 

 

C (O(412) → τ2( τ1 + 1 ) 
 
C(O(312)) → J ( J + 1 )                                                                                                  ( 6 ) 
 
This   allows   us  to   say   that  the Hamiltonian(5) is diagonal in the local basis(4) with eigen values 
 
E( N1, N2, ω1, ω2, τ1, τ2, J, MJ ) = E0 + A1ω1( ω1 + 2 ) + A2ω2( ω2 + 2 ) 

                                                      +A12[ τ1( τ1 + 2 ) + τ 2

2
] + A 12 [ τ2( τ1 + 1 ) ] 

                                                      + BJ( J + 1 )                                                             ( 7 ) 
 
The   last   term   in   the   right   hand   side of Equation(7) represents the rotational part. 
 
The rotational constant B is related to the rigid rotational motion of the molecule. 
 

For   our  study,  we  consider  the simple case in which   A 12 = 2A12.   The  energy eigen values(7) then can be 
written as 
 
E( N1, N2, ω1, ω2, τ1, τ2, J, MJ ) = E0 + A1ω1( ω1 + 2 ) + A2ω2( ω2 + 2 ) 
                                                      +A12[ ( τ1 + τ2 ) ( τ1 + τ2 + 2 ) ] + BJ( J + 1 )          ( 8 ) 
 
Introducing the local vibrational quantum numbers, νa, νb, νc ( Fig.1 ), the expression(8) can be converted to the 
usual spectroscopic notation. The relation between the two sets of quantum numbers can be stated as follows : 
 
ω1 = N1 - 2νa 
ω2 = N2 - 2νc 
τ1 = N1 + N2 -2νa - 2νb -2νc - K 
τ2 = K                                                                                                                             ( 9 )  
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Here one of the quantum numbers, τ2, now has been converted to the quantum number K describing the projection 
of the rotational angular momentum on the molecular fixed axis. The quantum numbers νa, νc denote here local 
stretching vibrations, while the quantum numbers, νb, denote the bending vibrations(Fig.1). 
 
We  are  now  in  a  position  to focus our attention on the vibrational part of the spectrum given by the Equation (8). 
This is achieved simply by putting B = 0 in Equation(8). As we are not interested here in rotational levels, the 
contribution to the spectrum from the quantum number K must collapse on the corresponding vibrational level. It  

can be seen from above that this has been achieved here simply by letting A 12 = 2A12. The resulting spectrum is a 
purely vibrational one and represents a bent triatomic molecule in the strict local limit. Using Equation (9), we can 
rewrite the Equation (8) in terms of the set of vibrational quantum numbers ( νa, νb, νc ) to get the resulting spectrum, 
which now becomes 
 

E( νa, νb, νc ) = E0
- 4A1[ ( N1 + 1 )νa - ν 2

a
 ] – 4A2[ ( N2 + 1 )νc - ν 2

c
] 

                           – 4A12[ ( N1 + N2 +1 ) ( νa + νb + νc ) – ( νa + νb + νc )
2]                  ( 10 ) 

 
In  Equation (10),  one  should  note  that  while  the  terms  involving A1  and A2  may be related  to  local  
stretching  vibrational modes, the term in A12 must take into account the bending mode and also interactions 
between modes. Also it may be noted here that in this study,  in  each  case,  E0 ,  the zero of the energy scale is 
chosen as the lowest vibrational level, ( 0, 0, 0 ) ( the ground vibrational level). 
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Fig.1  Local vibrational quantum numbers of bent triatomic(XY2) molecules.
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2.3  Intermode couplings in U(4) algebraic models : Majorana operator 
It is observed that even for a good local molecule, especially at higher excitation energies, local vibrations start to 
mix among themselves to some extent. In algebraic U(4) models, such couplings can only be accommodated by an 
operator known as Majorana operator(M12) [5-6]. In such a case, to have the proper approximation of the picture, we 
are to add non-diagonal interactions to our initial local model. It may be noted that for symmetric  molecules,  local-
mode  splitting  gives  a  direct  measure  of  the   action   of  M12. For bent triatomic molecules, M12 is closely 
related(excluding constant terms) to the invariant operator of the coupled algebra U12(4) appearing in the ‘normal’ 
chain[6]. Its physical role is to introduce intermode coupling terms in the local basis. By making explicit use of 
group theoretical techniques, it is possible to show that M12, acting within a given irreducible representation( τ1, τ2 ) 
of O12(4), couples states satisfying the selection rules  ∆ω1 = 0, ±2 ; ∆ω2 = 0, ±2. 
 
On the basis of the above cited preamble, now we can see the realistic case of a bent triatomic molecule in which 
local modes(either stretching or bending) are allowed to interact among themselves. Already it is told above that in 
the algebraic framework, this kind of interaction is properly accounted for by M12. It should be noted here that in the 
three-dimensional algebraic model the preserved symmetry is O12(4) since it appears in both local and normal sub-
algebra chains.[6]. In the present case(this study), we therefore expect to have a block-diagonal structure of the 
Hamiltonian matrix. The conserved quantum numbers are now ( τ1, τ2 ) because they label the irreducible 
representations of O12(4). Consequently, the introduction of intermode coupling terms in the local picture will lead 
to a symmetry breaking, where only those states with the same ( τ1, τ2 ) quantum numbers can interact among 
themselves. For the bent triatomic molecules, this is equivalent to say that M12 acts on polyads of states with the 
same total vibrational quantum number 
 

υTotal =  υa + υb + υc                                                                                                      ( 11 ) 
 
2.4   Local to normal transition 
For bent triatomic molecules the local to normal transition can be described by combining the operators of the local 
chain with those of the normal chain. To serve the purpose in its befitting manner, it is convenient here to introduce 
M12. To study the local to normal transition of bent triatomic(XY2) molecules, at the very out set once again we 
consider the Equation(5). Since all terms in Equation(5) are diagonal, this Hamiltonian represents two Morse 
oscillators diagonal in the local mode basis.It is already told that although the local mode basis provides a good 
zeroth-order approximation, the actual situation departs from it. As stated earlier, the transition from local to normal 
can be achieved in the algebraic approach by introducing another class of operators, called Majorana operators. 
These operators are non-diagonal in the local mode basis, but the matrix elements of these operators we can compute 
very easily[5,19]. These operators have matrix elements that induce both local mode couplings(which replace the 
Darling-Dennison couplings of the traditional Dunham expansion) and Fermi couplings[5]. The former are 
particularly important for the class of bent XY2 molecules that we are describing in this study. It may be noted here 
that for bent triatomic molecules, in lowest order, there is only one such operator. Addition of this operator results 
the Hamiltonian 
 
H = E0 + A1C(O(41)) + A2C(O(42)) + A12C(O(412)) + λ12M(U(412)).                          ( 12 ) 
 
In Equation(12) we have deleted all the terms contributing to rotational energies. 
 
In the light of the Section 2.3, we may now explicitly analyze the couplings induced by M12. Since this operator is 
diagonal in the O12(4) basis, it couples only states with the same ( τ1, τ2 ) quantum numbers. In bent triatomic 
molecules, where Equation(9) applies, this implies a coupling between all states with υa + υb + υc  = constant. It may 
be noted that to leading order in N, the couplings induced by the Majorana operator(M12) are identical to the local 

mode couplings[20], while to next order,N , they induce Fermi type couplings[5-6]. The situation is thus similar 
to that described in the study of Halonen and Carrington[21]. Also it may be noted that the local mode couplings, 
when converted to a normal mode picture, induce Darling-Dennison couplings[21]. Considering the 
Hamiltonian(12), the matrix elements of M12 from the references[5,19], and the algebraic parameters from the 
subsequent section, we can have the energies of the different vibrational bands in terms of the algebraic parameters 
A, A12, λ12  and N(independent parameter).  
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2.5  Determination of  N1, N2, A1, A2, A12  and λλλλ12 
The number N [total number of bosons, label of the irreducible representation of U(4)] is related to the total number 
of bound states supported by the potential well. Equivalently it can be put in a one-to-one correspondence[5-6] with 
the anharmonicity parameters xe by means of 
 

xe = 
2

1

+N
                                                                                                                    ( 13 ) 

 
 

We have from Equation (13),   xe = 
2

1

+N
  ;  which we can rewrite as 

 
 

N = 














xee

e

ω
ω

 −    2  ,  ωe →   spectroscopic constant.                                                    ( 14 ) 

 
Now, for a bent XY2 molecule, we can have the values of ωe and ωexe for the XY bond from the study of K.P. Huber 
and G. Herzberg[22]. Using the values of ωe and ωexe  for the bond XY we can have the initial guess for the value of 
the vibron number N from Equation (14). It may be noted here that in the algebraic approach, there is provision to 
change(not more than ±20%) the value of N to get better results. This is equivalent to change the single-bond 
anharmonicity according to the specific molecular environment, in which it can be slightly different.  
 

In case of a bent triatomic molecule XY2, two bonds are identical( XY, XY ). Hence here we shall get N1 = N2 = N 
(say). Similarly, here also we shall have  A1 = A2 = A (say) corresponding to the similar bonds XY and XY. 
 
When N is determined, parameters A ( A1 = A2 = A ), A12 and λ12 can be determined as follows : 
 
Taking necessary observed energy levels from the data base, using the Hamiltonian(12), we can have the initial 
guess for the parameters A ( = A1 = A2 ), A12 and  λ12. Starting from this initial guess, to get better results,  the 
values of A ( = A1 = A2 ), A12 and  λ12  can be adjusted using the numerical fitting procedure(in a least square sense).  
 
2.6  Locality parameter 
Both for bent and linear triatomic molecules, corresponding to the two bonds, in general there are two locality 
parameters[5-6] given by 
 
 

ξi  =  
π
2

 tan-1

( )







+ 12

128

AAi

λ
  ,     i = 1, 2 .                                                                         ( 15 )    

 
Here,  A1, A2, A12  and λ12 are algebraic parameters corresponding to the molecule under consideration.   
 
A global locality parameter both for bent and linear triatomic molecules can be defined as the geometric mean [5] 
 

( )21ξξξ =                                                                                                                                          ( 16 )                  

  
It should be noted here that both for bent and linear XY2 molecules  A1 = A2 ,   and  hence  for these molecules ξ1 =  

ξ2 .             
 
With this definition[5-6,20] due to Child and Halonen[20], local-mode molecules are near to the ξ = 0 limit and  
normal mode molecules have ξ →1.  
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Locality parameters of the bent XY2 molecules H2S and H2O
16 are given in Table.1.    

 
Table.1 Locality parameters of  H2S and H2O16. 

 
Molecule Locality parameter(ξ ) 

   H2S 0.07 
    H2O16  0.31 

 
RESULTS AND DISCUSSION 

 
Using the concepts of the study of Child and Halonen[20] , from    the value of the   locality   parameter [5-6] we 
can have a guess  regarding    the    behaviour ( local  or  normal )   of    a    molecule. It may be noted here that the 
situation in case of bent XY2 molecules will be different with respect to the linear triatomic & tetratomic molecules 
we studied earlier[7, 8, 15]. In case of bent XY2 molecules, the two stretching modes ( 1 0 0 ) and ( 0 0 1 ) have the 
same energy and therefore couple strongly, leading to normal behaviour in general. 
 
A comparison of the observed vibrational energy levels of H2S[23] and those calculated using the U(4)  algebraic 
model has been shown in Table 2. A comparison of the observed vibrational energy levels of H2O

16[24] and those 
calculated using the U(4)  algebraic model has been shown in Table 3. In Table 2 and Table 3 we have shown the 
calculated vibrational energy levels of H2S and H2O

16 for some 9 vibrational bands using the algebraic model. For 9 
vibrational bands, here we have reported the RMS deviation(∆(r.m.s.)) for H2O

16 as  7.4 cm-1. We could not have the 
observed value of the vibrational band (0 0 2) of H2S from the database available to us. Hence, RMS deviation we 
calculated here excluding this band. The RMS deviation for H2S  we have reported in this study is  4.6 cm-1. Both 
for H2S and H2O

16, the intermode couplings have been accounted by introducing the Majorana operator as usual. 
Fermi interaction is important particularly for the molecules having accidental degeneracies. Obviously this is not 
the case for our study. Our desire in this study is to show the improved level of accuracy of the results using the less 
number of algebraic parameters. Hence, intentionally we drop here Fermi interaction and higher order correction 
terms[5] from the Hamiltonian. The improved RMS deviations both for H2S and H2O

16 may be noted in this case as 
soon as the intermode couplings have been taken care of by introducing the improved set of algebraic parameters. 
From Table 1 and as per Section 2.6 one can see that in its behaviour, H2S should approach a local molecule. This is 
to say that the intermode couplings in case of H2S must not be so much prominent as compared to the case of a 
normal molecule. In this regard, however, one should keep in mind that even for a good local molecule, at higher 
excitation energies, local vibrations start to mix among themselves to some extent resulting considerable intermode 
couplings. In this light, it can be expected here that at higher excitation energies, H2S also should have considerable 
intermode couplings. Value of the locality parameter(Table 1) and Section 2.6 tell us that H2O

16 must show more 
normal behaviour compared to that of H2S. This is to say that the intermode couplings in H2O

16 are more prominent 
compared to that of H2S. Obviously, this more prominent intermode couplings of H2O

16 could not be accounted as 
good as it could be done in case of H2S. However, using only three algebraic parameters, the more prominent 
intermode couplings of H2O

16 along with the less prominent intermode couplings of H2S have been accommodated 
in this study in a better way compared to other equivalent published works[19,25] used for the vibrational spectral 
analysis of bent XY2 molecule. As a result, the RMS deviations both for H2S and H2O

16 have come down here to the 
level of the experimental accuracy. Trends of the results(Table 2 & Table 3) show that the constancy of the RMS 
deviation will be well maintained even when the other higher overtones are also taken under consideration. In this 
context also one should note that in traditional approaches [21, 26-32], a large number of parameters would be 
needed to attain the RMS deviations we reported in this study for H2S and H2O

16 using only three parameters. 
 
In Table 2  &  Table 3, for all the calculated vibrational energy levels of H2S and H2O

16, also we have shown the 
percentage of error(δ). It can be seen from Table 2  &  Table 3 that for each of the calculated vibrational energy 
level of H2S and H2O

16, the percentage of error is either negligible or very small. This confirms the accuracy of the 
results we have reported in this study both for H2S and H2O

16.   
 
Finally one should note that the isotope effects for the bent XY2 molecules can be studied by analyzing the scaling 
properties of the A coefficients with masses mx and my[6]. It is possible to construct simple scaling laws[5-6] for the 
algebraic parameters relating to isotopic substitution in a bent XY2 molecule. One can apply these rules for the 
prediction of vibrational spectra of isotopic species of a bent XY2 molecule with an expected good RMS accuracy.  
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Table 2.  Vibrational energy levels of  H2Sa 

 
ν1      ν2      ν3         Expt.b       Calc.c          ∆d        δe 
0      1      0 1182.6 1186.9 -4.3 0.4 
0      0      1 2628.5 2632.8 -4.3 0.2 
1      0      0 2614.4 2618.7 -4.3 0.2 
0      2      0       2354.0 2345.5 +8.5 0.4 
1      1      0  3779.2 3777.3 +1.9 0.1 
0      1      1 3789.3 3791.4 -2.1 0.1 
1      0      1 5147.4 5152.0 -4.6 0.1 
0      0      2 -- 5217.5 -- -- 
2      0      0 5145.1 5149.3 -4.2 0.1 

∆(r.m.s.) = 4.7 cm-1. 
aAll energies are in cm-1. 

bReferences [23] 
cN = 41, A = -8.9025 , A12 = -3.5326, λ12 = 0.1720. 

A , A12 , λ12 all are in cm-1 except N which is dimensionless. 
d( Expt. – Calc. ). 

ePercentage of error{{{{= [(Expt.∼Calc.)/Expt.] × 100.}}}} 
 

Table 3.  Vibrational energy levels of  H2O16 a 
 

ν1      ν2      ν3         Expt.b       Calc.c          ∆d        δe 
0      1      0      1595.0 1601.6  -6.6 0.4 
0      0      1      3755.9 3762.5  -6.6 0.2 
1      0      0      3657.0 3663.6  -6.6 0.2 
0      2      0            3151.4 3161.9  -10.5 0.3 
1      1      0       5234.9 5223.9 +11.0 0.2 
0      1      1      5331.2 5322.8 +8.4 0.2 
1      0      1      7249.8 7251.9 -2.1 0.0 
0      0      2      7445.0 7437.5 +7.5 0.1 
2      0      0      7201.5 7199.2 +2.3 0.0 

∆(r.m.s.) = 7.4 cm-1. 
aAll energies are in cm-1. 

bReferences [24] 
cN = 34, A = -16.6161 , A12 = -5.1611, λ12 = 1.4544. 

A , A12 , λ12 all are in cm-1 except N which is dimensionless. 
d( Expt. – Calc. ). 

ePercentage of error{{{{= [(Expt.∼Calc.)/Expt.] × 100.}}}} 

 
CONCLUSION 

 
A study of the vibrational spectra of bent XY2 molecules H2S and H2O

16 has been presented in this work using the 
algebraic model. Inclusion of improved set of algebraic parameters and intermode couplings in algebraic models 
towards achieving the improved RMS deviations as well as to give a deep insight into the detailed spectroscopy has 
been addressed for the molecules H2S and H2O

16.   
 
On the basis of the results reported here, the conclusions of the study now may be drawn as follows : 
 
( i ) Introducing the improved set of algebraic parameters, bent XY2 molecules H2S and H2O

16 can be approximated 
very well using the algebraic model in local to normal transition. 
( ii )  Using the algebraic model in local to normal transition, H2S can be approximated better compared to that of 
H2O

16. 
( iii ) H2S shows more local behaviour than that of  H2O

16. Intermode couplings are much more prominent in case of 
H2O

16 compared to that of H2S. 
 ( iv ) Inclusion of intermode couplings in algebraic models provides improved RMS deviations as well as a deep 
insight into the detailed spectroscopy both for H2S and H2O

16.  
( v )  The RMS deviations reported in this study for the bent XY2 molecules H2S and  H2O

16 are better compared to 
other equivalent published works. This implies that the algebraic parameters reported in this study provide the better 
three parameter fits to the spectra of H2S and  H2O

16 compared to other equivalent published works. 
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( vi ) Percentage of error for each of the calculated vibrational energy levels of H2S and  H2O
16 is either negligible or 

very small. This confirms the better accuracy of the results  reported in this study for H2S and  H2O
16 compared to 

other equivalent published works. 
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