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ABSTRACT 
 
Subcellular location prediction of proteins is an important and well-studied problem in 
bioinformatics. This is a problem of predicting which part in a cell a given protein is transported 
to, where an amino acid sequence of the protein is given as an input. This problem is becoming 
more important since information on subcellular location is helpful for annotation of proteins 
and genes and the number of complete genomes is rapidly increasing. Since existing predictors 
are based on various heuristics, it is important to develop a simple method with high prediction 
accuracies. Support vector machines play an important role in developing models to predict 
higher accuracies with different parameters of protein. 
______________________________________________________________________________ 
 

INTRODUCTION 
 
The prediction of protein subcellular localization (PSL) focuses on determining localization sites 
of unknown proteins in a cell. The study of PSL is important for elucidating protein functions 
involved in various cellular processes. Despite recent technical advances, experimental 
determination of PSL remains time-consuming and labor-intensive. In addition, researches in the 
post-genomic era have yielded a tremendous amount of sequence data. Given the size and 
complexity of the data, many researchers would prefer to use prediction systems to identify and 
screen possible candidates for further analyses. Hence, computational approaches have become 
increasingly important. 
 
Previous works 
Extensive studies of PSL prediction have led to the development of several methods, which can 
be classified as follows. 
1. Amino acid composition-based methods These methods utilize machine learning techniques, 
including neural networks [1] and support vector machines (SVM) [2-8]. This category includes 
methods like P-CLASSIFIER [6] and CELLO [7,8], which utilize n-peptide composition-based 
SVM approaches. 
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2. Methods that integrate various protein characteristics Several methods including expert 
systems [9,10], k-nearest neighbor [11-13], SVM [14-16], support vector data description [17], 
and Bayesian networks [18-21], integrate various biological features that influence localization. 
The features that characterize a protein can be extracted from biological literature, public 
databases, and related prediction systems. Both PSORTb [18,19] and PSLpred [14] integrate 
different analytical modules and demonstrate that the hybrid approaches perform better than each 
individual module. 
 
3. Sequence homology-based methods It has been suggested that PSL is an evolutionary 
conserved trait [20,21]. Efforts to address the relationship between evolutionary information and 
localization identity have relied heavily on exploiting sequence similarity to infer PSL. Such 
methods include phylogenetic profiling [22], domain projection [23], and a sequence homology-
based method [7]. Several other methods, such as PSORTb and PSLpred, also incorporate such 
sequence homology-based components in their analyses. 
 
General biological features 
1. Amino acid (AA) composition: Protein descriptors based on n-peptide compositions or their 
variations have proved effective in PSL prediction [8]. If n = 1, then the n-peptide composition 
reduces to amino acid composition, which generates a 21 dimensional feature vector (i.e., 20 
amino acid types plus a symbol 'X', for others) that represents the occurrence frequency of amino 
acids in a protein sequence. 
2. Di-peptide (DP) composition: Similar to amino acid composition, if n = 2, the di-peptide 
composition gives a fixed length of 21 × 21 di-peptides, which represent the occurrence 
frequency of amino acid pairs in a protein sequence. 
3. Relative solvent accessibility (RSA): Proteins in different compartments have various buried 
and exposed residue compositions [24,25]. For example, CP proteins have a balance of acidic 
and basic surface residues, while EC proteins have a slight excess of acidic surface residues [26]. 
We use amino acid compositions of both buried and exposed residues, with a cutoff of 25% [27], 
to represent the results derived by SABLE II [28], a relative solvent accessibility prediction 
method. 
 
4. Secondary structure elements encoding scheme 1 (SSE1): Transmembrane a-helices are 
frequently observed in IM proteins, while transmembrane β-barrels are primarily found in OM 
proteins [29]. Secondary structure elements (SSE) are crucial for detecting proteins localized in 
the IM and OM. We compute the amino acid compositions of three SSEs [15,38], a-helix, β-
strand, and loop, based on the predictions of HYPROSP II [27], a knowledge-based SSE 
prediction approach. 
 
5. Secondary structure elements encoding scheme 2 (SSE2): SSE1 alone cannot discriminate 
proteins that share similar SSE compositions and localize in different compartments. For 
example, the SSE compositions of OM proteins might be similar to proteins localized in other 
compartments, but OM proteins are characterized by β-strand repeats throughout the 
transmembrane domains. To further depict such properties in a protein, three descriptors, 
composition, transition, and distribution, are used to encode predictions of HYPROSP II. 
Composition describes the global composition of a given SSE type in a protein. Transition 
characterizes the percentage frequency that amino acids of a particular SSE type are followed by 
a different type. Distribution measures the chain length within which the first, 25, 50, 75 and 
100% of the amino acids of a particular SSE type are location [28]. 
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Compartment-specific biological features 
1. Signal peptides (SIG): Signal peptides are N-terminal peptides, typically between 15 and 40 
amino acids long, which target proteins for translocation through the general secretory pathway 
[1]. The presence of a signal peptide suggests that the protein does not reside in the CP and 
several prediction methods have been developed [27-29]. We employ SignalP 3.0 [27], a neural 
network- and hidden Markov model-based method, to predict the presence and location of signal 
peptide cleavage sites. 
2. Transmembrane a-helices (TMA): Integral IM proteins are characterized by a-helices, 
typically 20–25 amino acids in length, which traverse the IM. The presence of one or more 
transmembrane a-helices implies that the protein is located in the IM. We apply TMHMM 2.0 
[30], a hidden Markov model-based method, to identify potential transmembrane a-helices. 
3. Twin-arginine translocase (TAT) motifs: The twin-arginine translocase system exports 
proteins from the CP to the PP. The proteins translocated by twin-arginine translocase bear a 
unique twin-arginine motif [31], the presence of which is a useful feature for distinguishing 
between PP and non-PP proteins. We use TatP 1.0 [32], a neural network-based method, to 
predict the presence of twin-arginine translocase motifs. 
4. Transmembrane β-barrels (TMB): A large number of proteins residing in the OM are 
characterized by β-barrel structures; thus, they could be candidate features for detecting OM 
proteins. We adopt TMB-Hunt [33], a method that uses a k-nearest neighbor algorithm, to 
distinguish between transmembrane β-barrels and non-transmembrane β-barrels. 
5. Non-classical protein secretion (SEC): For a long time, it was believed that an N-terminal 
signal peptide was absolutely necessary to export a protein to the extracellular space. However, 
recent studies have shown that several EC proteins can be secreted without a classical N-terminal 
signal peptide [34]. Identification of non-classical protein secretion could be a potential 
discriminator for CP and EC proteins. Predictions from SecretomeP 2.0 [35], a non-classical 
protein secretion prediction method, are incorporated in our method. 
 
Sequence and structure conservation: 
Because PSL tends to be evolutionary conserved, the known localization sites of homologous 
sequences could be useful indicators of the actual localization of an unknown protein. We apply 
both sequence and structural homology approaches to infer localization. For the sequence 
homology approach, we develop a prediction method, called PSLseq, which is based on pairwise 
sequence alignment of ClustalW. In the structural homology approach, we employ secondary 
structural similarity comparison, referred to as PSLsse. Based on secondary structure elements 
predicted by HYPROSP II, we use SSEA to perform pairwise secondary structure alignment. In 
the sequence and structural homology approaches, the known localization of the top-rank aligned 
protein is assigned to the query protein as its predicted localization.  
 
Knowing the subcellular location of proteins is important for understanding their functions. 
Many methods have been described to predict subcellular location from sequence information. 
However, most of these methods either rely on global sequence properties or use a set of known 
protein targeting motifs to predict protein localization. Here we develop and test a novel method 
that identifies potential targeting motifs using a discriminative approach based on Hidden 
Markov models (discriminative HMMs). These models search for motifs that are present in a 
compartment but absent in other, nearby, compartments by utilizing an hierarchical structure that 
mimics the protein sorting mechanism. We show that both discriminative motif finding and the 
hierarchical structure improves localization prediction on a benchmark dataset of yeast proteins. 
The motifs identified can be mapped to known targeting motifs and they are more conserved 
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than the average protein sequence. Using our motif-based predictions we can identify what we 
believe are annotation errors in public databases for the location of some of the proteins. 
The predictions methods are described below:  
 
1. Target P 
Predicts the subcellular location of eukaryotic proteins (use results of ChloroP and SignalP). 
Secretory signal peptides, mitochondrial targeting peptides and chloroplast transit peptides in 
eukaryotes. http://www.cbs.dtu.dk/services/TargetP 
 
2. WolfPSort 
Protein Subcellular Localization Prediction (plant, animal, fungi).http://wolfpsort.org/ 
 
3.PSORTb: Bacterial protein subcellular localization prediction.http://www.psort.org/psortb/ 
 
4. SecretomeP 
The SecretomeP 2.0 server produces ab initio predictions of non-classical i.e. not signal peptide 
triggered protein secretion. The method queries a large number of other feature prediction 
servers to obtain information on various post-translational and localizational aspects of the 
protein, which are integrated into the final secretion prediction. 
http://www.cbs.dtu.dk/services/SecretomeP/ 
 
5.LOCtree is a novel system of support vector machines (SVMs) that predict the subcellular 
localization of proteins, and DNA-binding propensity for nuclear proteins, by incorporating a 
hierarchical ontology of localization classes modeled onto biological processing pathways. 
http://cubic.bioc.columbia.edu/services/loctree/ 
 
6.Twin-arginine translocation signal peptides in bacteria.http://www.cbs.dtu.dk/services/TatP/ 
 
7.BaCelLo is a predictor for the subcellular localization of proteins in eukaryotes. It is based on a 
decision tree of several support vector machines (SVMs), it classifies up to four localizations for 
Fungi and Metazoan proteins and five localizations for Plant ones 
http://gpcr.biocomp.unibo.it/bacello/ 
 
8. Protein Prowler 
Subcellular Localisation Predictor (locations in plants and in other eukaryotes (TargetP 
data))..http://pprowler.imb.uq.edu.au/ 
 
9. CELLO is a multi-class SVM classification system. http://cello.life.nctu.edu.tw/ 
 
10.PA SUB: The Proteome Analyst Specialized Subcellular Localization Server (PA-SUB) is 
part of Proteome Analyst (PA). PA is a web server built to predict protein properties, such as 
general function, in a high-throughput fashion. PA-SUB is specialized to predict the subcellular 
localization of proteins using established machine learning techniques. 
http://www.cs.ualberta.ca/~bioinfo/PA/Sub/ 
 
11.Multiloc: Subcellular  location in plants, other eukaryotes, fungi.  
http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc/ 
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12. PSLpred: PSLpred is a SVM based method to predict 5 major subcelullar localization 
(cytoplam, inner-membrane, outermembrane, extracellular, and periplasm) of Gram-negative 
bacteria. http://www.imtech.res.in/raghava/pslpred/ 

 
 

 
Figure 2: Illustration to show the 22 subcellular locations of eukaryotic proteins.  

The 22 location sites are: (1) acrosome, (2) cell wall, (3) centriole, (4) chloroplast, (5) cyanelle, (6) cytoplasm, (7) 
cytoskeleton, (8) endoplasmic reticulum, (9) endosome, (10) extracell, (11) Golgi apparatus, (12) hydrogenosome, 
(13) lysosome, (14) melanosome, (15) microsome (16) mitochondria, (17) nucleus, (18) peroxisome, (19) plasma 

membrane, (20) plastid, (21) spindle pole body, and (22) vacuole [17]. 
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13.pTARGET: It is a computational method to predict the subcellular localization of only 
eukaryotic proteins from animal species that include fungi and metazoans. Predictions are carried 
out based on the occurrence patterns of protein functional domains and the amino acid 
compositional differences in proteins from different subcellular locations. This method can 
predict proteins targeted to nine distinct subcellular locations that include cytoplasm, 
endoplasmic reticulum, extracellular/secreted, Golgi, lysosomes, mitochondria, nucleus, 
peroxysomes and plasma membrane. http://bioapps.rit.albany.edu/pTARGET// 
 
14. Subloc: SubLoc is a prediction system for protein subcellular localization based on amino 
acid composition alone. http://www.bioinfo.tsinghua.edu.cn/SubLoc/ 
Figure 1 shows different subcellular localization positions of protein in Cell.  
 
Information of subcellular locations of proteins is important for in-depth studies of cell biology. 
It is very useful for proteomics, system biology and drug development as well. However, most 
existing methods for predicting protein subcellular location can only cover 5 to 12 location sites. 
Also, they are limited to deal with single-location proteins and hence failed to work for multiplex 
proteins, which can simultaneously exist at, or move between, two or more location sites. 
Actually, multiplex proteins of this kind usually posses some important biological functions 
worthy of our special notice. A new predictor called “Euk-mPLoc 2.0” is developed by 
hybridizing the gene ontology information, functional domain information, and sequential 
evolutionary information through three different modes of pseudo amino acid composition. It can 
be used to identify eukaryotic proteins among the following 22 locations (as shown in Figure 2): 
(1) acrosome, (2) cell wall, (3) centriole, (4) chloroplast, (5) cyanelle, (6) cytoplasm, (7) 
cytoskeleton, (8) endoplasmic reticulum, (9) endosome, (10) extracell, (11) Golgi apparatus, (12) 
hydrogenosome, (13) lysosome, (14) melanosome, (15) microsome (16) mitochondria, (17) 
nucleus, (18) peroxisome, (19) plasma membrane, (20) plastid, (21) spindle pole body, and (22) 
vacuole. Compared with the existing methods for predicting eukaryotic protein subcellular 
localization, the new predictor is much more powerful and flexible, particularly in dealing with 
proteins with multiple locations and proteins without available accession numbers. For a newly-
constructed stringent benchmark dataset which contains both single- and multiple-location 
proteins and in which none of proteins has pairwise sequence identity to any other in a same 
location, the overall jackknife success rate achieved by Euk-mPLoc 2.0 is more than 24% higher 
than those by any of the existing predictors. As a user-friendly web-server, Euk-mPLoc 2.0 is 
freely accessible at http://www.csbio.sjtu.edu.cn/bioinf/euk-multi-2/. For a query protein 
sequence of 400 amino acids, it will take about 15 seconds for the web-server to yield the 
predicted result; the longer the sequence is, the more time it may usually need. It is anticipated 
that the novel approach and the powerful predictor as presented in this paper will have a 
significant impact to Molecular Cell Biology, System Biology, Proteomics, Bioinformatics, and 
Drug Development. 
 
Proteins are sorted into different cellular compartments such as cytoplasm, nuclear region, 
mitochondrion, etc. or may be secreted out of the cell, and their proper functioning relies on this 
precise process of subcellular localization. Hence, subcellular location information may imply 
the function. DBSubLoc (Guo et al, 2004) is a protein subcellular localization annotation 
database, which is available at http://www.bioinfo.tsinghua.edu.cn/dbsubloc.html. The database 
contains >60�000 protein sequences from virus, bacteria, fungi, plant and animal. However, its 
service is via WWW and the user interface is built on web browsers, which is designed to be 
accessed by humans, not by machines. Thus, it is troublesome for users to use DBSubLoc in an 
automated manner. 
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METHODOLOGY:  Support vector machine (SVM) has been used to predict the subcellular 
location of eukaryotic proteins from their different features such as amino acid composition, 

dipeptide composition and physico-chemical properties. The SVM module based on dipeptide 
composition performed better than the SVM modules based on amino acid composition or 
physico-chemical properties. In addition, PSI-BLAST was also used to search the query sequence 
against the dataset of proteins (experimentally annotated proteins) to predict its subcellular 
location. 
 
Evaluation of different prediction softwares: 
The performance modules constructed in this study were evaluated using a 5-fold cross-
validation technique. In the 5-fold cross-validation, the relevant dataset was partitioned randomly 
into five equally sized sets. The training and testing was carried out five times, each time using 
one distinct set for testing and the remaining four sets for training. For evaluating the 
performance of various modules, accuracy and Matthew's correlation coefficient (MCC) were 
calculated using the following equations: The fractions of all 20 natural amino acids were 
calculated by using Equation 1, 
 

 

(1) 

 

 

 
(2) 

where x can be any subcellular location (nuclear, cytoplasm, extracellular and mitochondria), 
exp(x) is the number of sequences observed in location x, p(x) is the number of correctly 
predicted sequences of location x, n(x) is the number of correctly predicted sequences not of 
location x, u(x) is the number of under-predicted sequences and o(x) is the number of over-
predicted sequences.  
 
Support vector machine 
SVMs are universal approximators based on statistical and optimization theory. The SVM is 
particularly attractive to biological sequence analysis due to its ability to handle noise, large 
dataset and large input spaces [38]. Further details about the SVM can be obtained from Vapnik's 
papers [39] or http://www.imtech.res.in/raghava/eslpred/algo.html. In the present study, we have 
used SVM_light to predict the subcellular localization of proteins. This software is freely 

downloadable from http://www.cs.cornell.edu/People/tj/svm_light/. The software enables the 
users to define a number of parameters and also allows a choice of inbuilt kernel function, 
including linear, RBF and Polynomial. The parameters except kernel functions and regulatory 
parameters C were kept constant during the training. The prediction of subcellular localization is 
a multi-class classification problem. We developed a series of binary classifiers to handle the 
multi-classification problem. We constructed N SVMs for N-class classification. Here, the class 
number was equal to four for eukaryotic sequences. The ith SVM was trained with all samples in 
the ith class with positive labels and all other samples with negative labels. In this way, four 
SVMs were constructed for subcellular localization of protein to nuclear, cytoplasm, extracellular 
and mitochondria. An unknown sample was classified into the class that corresponded to the 
SVM with highest output score.  
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Protein features 
Amino acid composition 
Amino acid composition is the fraction of each amino acid in a protein. The fraction of all 20 
natural amino acids was calculated using the following equation:  
 

 

(3) 

where i can be any amino acid.  
 
Composition of physico-chemical properties 
The 33 physico-chemical properties were used to represent proteins as shown in Table S1 of the 
supplementary material [40]. The values of each physio-chemical property for all 20 amino acids 

were normalized between 0 and 1 using the standard conversion formula. The input vector has 33 
scalar values, each representing the average value of a distinct physico-chemical property of 

protein.  
 
Dipeptide composition 
Dipeptide composition was used to encapsulate the global information about each protein 
sequence, which gives a fixed pattern length of 400 (20 x 20). This representation encompassed 
the information about amino acid composition along local order of amino acid. The fraction of 
each dipeptide was calculated using following equation:  
 
 
Fraction of dipeptide = total number of dipeptide (i)  
                                Total no. Of all possible dipeptides (4) 

where dep(i) is one out of 400 dipeptides.  
 

DISCUSSION 
 
In general, artificial intelligence (AI) based techniques such as SVMs and neural networks are 
elegant approaches for the extraction of complex patterns from biological sequence data. These 
techniques are highly successful for residue state prediction where fixed window/pattern length is 
used [42]. The major limitation of the AI techniques is that they need patterns/input units of fixed 
length. This is the major reason for the failure of the AI techniques in the classification of 
proteins (e.g. subcellular localization prediction, fold recognition) because similar/homologous 

proteins often have variable length. In order to overcome this problem, a fixed-length pattern 
must be generated for proteins, for AI techniques to be implemented. 
 
The percentage composition of amino acids, which gives a fixed pattern length of 20, is 
commonly used by AI techniques for the classification of proteins. This strategy has been used 

previously for developing the method for subcellular localization prediction of eukaryotic and 
prokaryotic proteins [47,48]. However, this approach provides information only about the amino 
acid frequency, but no information about the local order of amino acids [43]. To provide the 
information about frequency and local order of amino acids, dipeptide composition (instead of 
amino acid composition) can be used as the input unit to AI techniques. Dipeptide composition 
gives a fixed pattern length of 400. Dipeptide composition is widely used in the development of 
methods for fold prediction [44]. The prediction accuracy of the dipeptide composition-based 
method should be higher than that of amino acid composition based methods [45]. More 
information about the protein sequence can be encapsulated using tripeptide composition. 
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Tripeptide composition gives a fixed pattern length of 8000, which is commonly used in 
similarity searching in BLAST and FASTA (41,46). In the case of tripeptide composition, ANN 
and SVM are unable to handle the noise due to the large number of input units and number of 
missing tripeptides in a protein. The physico-chemical properties of a protein are yet another 

alternative way to provide the global information of a protein in the form of fixed pattern length. 
The prediction accuracy can further be improved, by devising methodologies to encapsulate more 
comprehensive information of a protein. A SVM-based module (hybrid) was constructed on the 
basis of comprehensive information about proteins including amino acid composition, physico-
chemical properties, dipeptide composition and PSI-BLAST results. The hybrid module 
predicted the subcellular localization of a protein more accurately than the rest of the modules 
developed in this study. These results confirmed that the approach is capable of capturing more 
information about a protein that is crucial for detecting subcellular localization of proteins. Thus, 
providing more comprehensive information can be useful in enhancing the prediction accuracy of 
fold or tertiary structure prediction methods.  
 
In conclusion, a new method for subcellular localization of a eukaryotic protein is presented. 
This method will nicely complement the existing subcellular localization prediction methods. It 

will assist in assigning the subcellular location or function of proteins more reliably. The authors 
believe that the prediction method presented here would be useful for the annotation of the piled-
up genomic data.  
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