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ABSTRACT

Subcellular location prediction of proteins is amportant and well-studied problem in

bioinformatics. This is a problem of predicting ainipart in a cell a given protein is transported
to, where an amino acid sequence of the protegivien as an input. This problem is becoming
more important since information on subcellulardton is helpful for annotation of proteins

and genes and the number of complete genomesidyapcreasing. Since existing predictors
are based on various heuristics, it is importanti&velop a simple method with high prediction
accuracies. Support vector machines play an immpartale in developing models to predict
higher accuracies with different parameters of prot

INTRODUCTION

The prediction of protein subcellular localizati@SL) focuses on determining localization sites
of unknown proteins in a cell. The study of PSLnmportant for elucidating protein functions
involved in various cellular processes. Despiteenéctechnical advances, experimental
determination of PSL remains time-consuming andraftensive. In addition, researches in the
post-genomic era have yielded a tremendous amadusequence data. Given the size and
complexity of the data, many researchers wouldeprif use prediction systems to identify and
screen possible candidates for further analysescéjecomputational approaches have become
increasingly important.

Previous works

Extensive studies of PSL prediction have led todéeelopment of several methods, which can
be classified as follows.

1. Amino acid composition-based methddsese methods utilize machine learning techniques,
including neural networks [1] and support vectorchiaes (SVM) [2-8]. This category includes
methods like P-CLASSIFIER [6] and CELLO [7,8], whiatilize n-peptide composition-based
SVM approaches.
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2. Methods that integrate various protein charactecstSeveral methods including expert
systems [9,10]k-nearest neighbor [11-13], SVM [14-16], supportteedata description [17],
and Bayesian networks [18-21], integrate variowudogical features that influence localization.
The features that characterize a protein can beaagt from biological literature, public
databases, and related prediction systems. BothRF8(18,19] and PSLpred [14] integrate
different analytical modules and demonstrate thathtybrid approaches perform better than each
individual module.

3. Sequence homology-based methdtddras been suggested that PSL is an evolutionary
conserved trait [20,21]. Efforts to address thatrehship between evolutionary information and
localization identity have relied heavily on expiog sequence similarity to infer PSL. Such
methods include phylogenetic profiling [22], domaimjection [23], and a sequence homology-
based method [7]. Several other methods, such @RFPB and PSLpred, also incorporate such
sequence homology-based components in their arsalyse

General biological features

1. Amino acid (AA) compositiorProtein descriptors based afpeptide compositions or their
variations have proved effective in PSL predicti8h If n = 1, then then-peptide composition
reduces to amino acid composition, which generat@4d dimensional feature vector (i.e., 20
amino acid types plus a symbol 'X', for others} tle@resents the occurrence frequency of amino
acids in a protein sequence.

2. Di-peptide (DP) compositionSimilar to amino acid composition, if = 2, the di-peptide
composition gives a fixed length of 21 x 21 di-pees$, which represent the occurrence
frequency of amino acid pairs in a protein sequence

3. Relative solvent accessibility (RSA): Proteingdifferent compartments have various buried
and exposed residue compositions [24,25]. For el@n@P proteins have a balance of acidic
and basic surface residues, while EC proteins haslght excess of acidic surface residues [26].
We use amino acid compositions of both buried aqubged residues, with a cutoff of 25% [27],
to represent the results derived by SABLE Il [28]relative solvent accessibility prediction
method.

4. Secondary structure elements encoding sch&m@&SE1L): Transmembrarehelices are
frequently observed in IM proteins, while transmeane -barrels are primarily found in OM
proteins [29]. Secondary structure elements (S&&rrucial for detecting proteins localized in
the IM and OM. We compute the amino acid compas#iof three SSEs [15,38);helix, g-
strand, and loop, based on the predictions of HYBRQOI [27], a knowledge-based SSE
prediction approach.

5. Secondary structure elements encoding sch2ni®SE2): SSE1 alone cannot discriminate
proteins that share similar SSE compositions arahlitee in different compartments. For

example, the SSE compositions of OM proteins mightsimilar to proteins localized in other

compartments, but OM proteins are characterized pkstrand repeats throughout the
transmembrane domains. To further depict such ptiepein a protein, three descriptors,

composition, transition, and distribution, are ugedencode predictions of HYPROSP II.

Composition describes the global composition ofiveery SSE type in a protein. Transition

characterizes the percentage frequency that ansids af a particular SSE type are followed by
a different type. Distribution measures the chaingth within which the first, 25, 50, 75 and

100% of the amino acids of a particular SSE tygel@ration [28].

393

Scholars Research Library



Anubha Dubey et al Arch. Appl. Sci. Res., 2011, 3 (6):392-401

Compartment-specific biological features

1. Signal peptides (SIG)Signal peptides are N-terminal peptides, typicakyween 15 and 40
amino acids long, which target proteins for tranatmn through the general secretory pathway
[1]. The presence of a signal peptide suggeststh®aprotein does not reside in the CP and
several prediction methods have been develope@927/We employ SignalP 3.0 [27], a neural
network- and hidden Markov model-based methodyédipt the presence and location of signal
peptide cleavage sites.

2. Transmembranea-helices (TMA): Integral IM proteins are characterized lyhelices,
typically 20-25 amino acids in length, which traseerthe IM. The presence of one or more
transmembrana-helices implies that the protein is located in e We apply TMHMM 2.0
[30], a hidden Markov model-based method, to idgmibtential transmembrareehelices.

3. Twin-arginine translocase (TAT) motifsfhe twin-arginine translocase system exports
proteins from the CP to the PP. The proteins tcanased by twin-arginine translocase bear a
unique twin-arginine motif [31], the presence ofiethis a useful feature for distinguishing
between PP and non-PP proteins. We use TatP 1]0 d32eural network-based method, to
predict the presence of twin-arginine translocaséfm

4. Transmembranegs-barrels (TMB): A large number of proteins residing in the OM are
characterized by-barrel structures; thus, they could be candidatdufres for detecting OM
proteins. We adopt TMB-Hunt [33], a method that susek-nearest neighbor algorithm, to
distinguish between transmembrghbkarrels and non-transmembraiibarrels.

5. Non-classical protein secretion (SEGor a long time, it was believed that an N-terrhina
signal peptide was absolutely necessary to expprotin to the extracellular space. However,
recent studies have shown that several EC protaim$e secreted without a classical N-terminal
signal peptide [34]. Identification of non-clasdigarotein secretion could be a potential
discriminator for CP and EC proteins. Predictioranf SecretomeP 2.0 [35], a non-classical
protein secretion prediction method, are incorpaman our method.

Sequence and structure conservation:

Because PSL tends to be evolutionary conservedkriben localization sites of homologous
sequences could be useful indicators of the atbgalization of an unknown protein. We apply
both sequence and structural homology approachesféo localization. For the sequence
homology approach, we develop a prediction methalled PSLseq, which is based on pairwise
sequence alignment of ClustalW. In the structu@hblogy approach, we employ secondary
structural similarity comparison, referred to ad 8&®. Based on secondary structure elements
predicted by HYPROSP I, we use SSEA to perfornmyiae secondary structure alignment. In
the sequence and structural homology approachegnthwn localization of the top-rank aligned
protein is assigned to the query protein as itdipted localization.

Knowing the subcellular location of proteins is on@ant for understanding their functions.
Many methods have been described to predict sulbe@elocation from sequence information.
However, most of these methods either rely on dlebegquence properties or use a set of known
protein targeting motifs to predict protein localion. Here we develop and test a novel method
that identifies potential targeting motifs usingdecriminative approach based on Hidden
Markov models (discriminative HMMs). These modetésreh for motifs that are present in a
compartment but absent in other, nearby, compaitsi®nutilizing an hierarchical structure that
mimics the protein sorting mechanism. We show bwdh discriminative motif finding and the
hierarchical structure improves localization prédit on a benchmark dataset of yeast proteins.
The motifs identified can be mapped to known tangemotifs and they are more conserved
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than the average protein sequence. Using our rbasiéd predictions we can identify what we
believe are annotation errors in public databasethe location of some of the proteins.
The predictions methods are described below:

1 Target P

Predicts the subcellular location of eukaryotictems (use results of ChloroP and SignalP).
Secretory signal peptides, mitochondrial targefpegtides and chloroplast transit peptides in
eukaryotes. http://www.cbs.dtu.dk/services/TargetP

2. WolfPSort
Protein Subcellular Localization Prediction (plaarjmal, fungi).http://wolfpsort.org/

3.PSORTb: Bacterial protein subcellular localization predictinttp://www.psort.org/psortb/

4. SecretomeP

The SecretomeP 2.0 server produces ab initio gredscof non-classical i.e. not signal peptide
triggered protein secretion. The method queriemrgel number of other feature prediction
servers to obtain information on various post-ti@isal and localizational aspects of the
protein, which are integrated into the final seoreprediction.
http://www.cbs.dtu.dk/services/SecretomeP/

5.LOCtree is a novel system of support vector nreehi(SVMs) that predict the subcellular
localization of proteins, and DNA-binding propegsibr nuclear proteins, by incorporating a
hierarchical ontology of localization classes medebnto biological processing pathways.
http://cubic.bioc.columbia.edu/services/loctree/

6.Twin-arginine translocation signal peptides ietbaa.http://www.cbs.dtu.dk/services/TatP/

7.BaCellLo is a predictor for the subcellular lozation of proteins in eukaryotes. It is based on a
decision tree of several support vector machin®Ms, it classifies up to four localizations for
Fungi and Metazoan proteins and five localizatifmmd?lant ones
http://gpcr.biocomp.unibo.it/bacello/

8. Protein Prowler
Subcellular Localisation Predictor (locations inams and in other eukaryotes (TargetP
data))..http://pprowler.imb.uq.edu.au/

9. CELLO is a multi-class SVM classification systemttp://cello.life.nctu.edu.tw/

10.PA SUB: The Proteome Analyst Specialized Subcellular Laatibn Server (PA-SUB) is
part of Proteome Analyst (PA). PA is a web serwailtlio predict protein properties, such as
general function, in a high-throughput fashion. BB is specialized to predict the subcellular
localization of proteins using established machindearning techniques.
http://www.cs.ualberta.ca/~bioinfo/PA/Sub/

11.Multiloc: Subcellular location in plants, other eukaryofesgi.
http://www-bs.informatik.uni-tuebingen.de/ServiddsitiLoc/
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12. PSLpred PSLpred is a SVM based method to predict 5 majdacalullar localization
(cytoplam, inner-membrane, outermembrane, extiaeell and periplasm) of Gram-negative
bacteria. http://www.imtech.res.in/raghava/pslpred/
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Figure2: lllustration to show the 22 subcellular locations of eukaryotic proteins.

The 22 location sites are: (1) acrosome, (2) celllw(3) centriole, (4) chloroplast, (5) cyanell@) cytoplasm, (7)
cytoskeleton, (8) endoplasmic reticulum, (9) endusq10) extracell, (11) Golgi apparatus, (12) hygkenosome,
(13) lysosome, (14) melanosome, (15) microsomen(it6hondria, (17) nucleus, (18) peroxisome, @@sma
membrane, (20) plastid, (21) spindle pole body, @& vacuole [17].
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13.pTARGET: It is a computational method to prediceé subcellular localization of only
eukaryotic proteins from animal species that inelfichgi and metazoans. Predictions are carried
out based on the occurrence patterns of proteirctimal domains and the amino acid
compositional differences in proteins from differesubcellular locations. This method can
predict proteins targeted to nine distinct subdatlulocations that include cytoplasm,
endoplasmic reticulum, extracellular/secreted, Gollysosomes, mitochondria, nucleus,
peroxysomes and plasma membrane. http://bioappkany.edu/pTARGET//

14. Subloc SubLoc is a prediction system for protein subcalubcalization based on amino
acid composition alonéittp://www.bioinfo.tsinghua.edu.cn/SubLoc/
Figure 1 shows different subcellular localizatiaspions of protein in Cell.

Information of subcellular locations of proteinsingportant for in-depth studies of cell biology.
It is very useful for proteomics, system biologydairug development as well. However, most
existing methods for predicting protein subcelldtation can only cover 5 to 12 location sites.
Also, they are limited to deal with single-locatiproteins and hence failed to work for multiplex
proteins, which can simultaneously exist at, or endaetween, two or more location sites.
Actually, multiplex proteins of this kind usuallyopses some important biological functions
worthy of our special notice. A new predictor cdlléEuk-mPLoc 2.0” is developed by
hybridizing the gene ontology information, functndomain information, and sequential
evolutionary information through three different des of pseudo amino acid composition. It can
be used to identify eukaryotic proteins among thkwing 22 locations (as shown in Figure 2):
(1) acrosome, (2) cell wall, (3) centriole, (4) atdplast, (5) cyanelle, (6) cytoplasm, (7)
cytoskeleton, (8) endoplasmic reticulum, (9) endeso(10) extracell, (11) Golgi apparatus, (12)
hydrogenosome, (13) lysosome, (14) melanosome, ifli6josome (16) mitochondria, (17)
nucleus, (18) peroxisome, (19) plasma membrang,pl2@tid, (21) spindle pole body, and (22)
vacuole. Compared with the existing methods fordioteng eukaryotic protein subcellular
localization, the new predictor is much more powednd flexible, particularly in dealing with
proteins with multiple locations and proteins wih@vailable accession numbers. For a newly-
constructed stringent benchmark dataset which gwnthoth single- and multiple-location
proteins and in which none of proteins has pairveisguence identity to any other in a same
location, the overall jackknife success rate adhielyy Euk-mPLoc 2.0 is more than 24% higher
than those by any of the existing predictors. Assar-friendly web-server, Euk-mPLoc 2.0 is
freely accessible at http://www.csbio.sjtu.edu.mifti/euk-multi-2/. For a query protein
sequence of 400 amino acids, it will take abouts&Bonds for the web-server to yield the
predicted result; the longer the sequence is, thieertime it may usually need. It is anticipated
that the novel approach and the powerful prediet®rpresented in this paper will have a
significant impact to Molecular Cell Biology, SysteBiology, Proteomics, Bioinformatics, and
Drug Development.

Proteins are sorted into different cellular compants such as cytoplasm, nuclear region,
mitochondrion, etc. or may be secreted out of #lk and their proper functioning relies on this
precise process of subcellular localization. Herscdacellular location information may imply
the function. DBSubLoc (Guo et al, 2004) is a proteubcellular localization annotation
database, which is available at http://www.bioitfimghua.edu.cn/dbsubloc.html. The database
contains >601000 protein sequences from virus, bacteria, fupigint and animal. However, its
service is via WWW and the user interface is boiltweb browsers, which is designed to be
accessed by humans, not by machines. Thus, bublesome for users to use DBSubLoc in an
automated manner.
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METHODOLOGY: Support vector machine (SVMpas been used to predict the subcellular
location of eukaryotigroteins from their different features such as amacid composition,
dipeptide composition and physico-chemical propsrtiThe SVMmodule based on dipeptide
composition performed better thaime SVM modules based on amino acid composition or
physico-chemicgbroperties. In addition, PSI-BLAST was also useddarch thquery sequence
against the dataset of proteins (experimentafipotated proteins) to predict its subcellular
location.

Evaluation of different prediction softwares:

The performance modules constructed in this stugyewevaluatedising a 5-fold cross-
validation technique. In the 5-fold cross-validatithe relevant dataset was partitioned randomly
into five equallysized sets. The training and testing was carrigdio@ times,each time using
one distinct set for testing and the remainifogr sets for training. For evaluating the
performance of variousodules, accuracy and Matthew's correlation cdeffic(MCC)were
calculated using the following equations: The fiats of all 20 natural amino acids were
calculated by using Equation 1,

Total Number of amino acid |

Totai number of amino acids ina protein (1)

tp+itn
tp+in+ [p+[n

Accuracy(x) =

(2)
wherex can be any subcellular location (nuclear, cytaplasxtracellularand mitochondria),
exp&) is the number of sequences obseriredocation x, p(x) is the number of correctly
predicted sequenced locationx, n(x) is the number of correctly predicted sequenuasof
location x, u(x) is the number of under-predicted sequeranebo(x) is the number of over-
predicted sequences.

Support vector machine

SVMs are universal approximators based on stasisaad optimizatiortheory. The SVM is
particularly attractive to biological sequenaealysis due to its ability to handle noise, large
dataset ankarge input spaces [38]. Further details aboutS¥#&1 can beobtained from Vapnik's
papers [39] or http://www.imtech.res.in/raghavaiesii/algo.htmlin the present study, we have
used SVM light to predict theubcellular localization of proteins. This softwaee freely
downloadable from http://www.cs.cornell.edu/Pedpk/m_light/. The software enables the
users to define a number of parametmnd also allows a choice of inbuilt kernel function
including linear, RBF and Polynomial. The parameters excephéd functionsand regulatory
parameters C were kept constant during the traifiing prediction of subcellular localization is
a multi-classclassification problem. We developed a series ofity classifierdo handle the
multi-classification problem. We constructBidSVMs for N-class classification. Here, the class
number wagqual to four for eukaryotic sequences. TtheSVM was traineavith all samples in
the ith class with positive labels and ather samples with negative labels. In this wawr fo
SVMs wereconstructed for subcellular localization of protemuclearcytoplasm, extracellular
and mitochondria. An unknown sampl@s classified into the class that correspondethé¢o
SVM with highest output score.
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Protein features

Amino acid composition

Amino acid composition is the fraction of each amacid ina protein. The fraction of all 20
natural amino acids was calculated using the following equation:

Total Number of amino acid |

~ Total number of amine acids ina protein (3)
wherei can be any amino acid.

Composition of physico-chemical properties

The 33 physico-chemical properties were used teesgmt proteinas shown in Table S1 of the
supplementary material [40]. Thialues of each physio-chemical property for alb2@ino acids
were normalized between 0 and 1 using the starmtardersiorformula. The input vector has 33
scalar values, each representthg average value of a distinct physico-chemicabperty of
protein.

Dipeptide composition

Dipeptide composition was used to encapsulate tbbal informationabout each protein
sequence, which gives a fixed pattern leraftd00 (20x 20). This representation encompassed
the informatiorabout amino acid composition along local order mire acid.The fraction of
each dipeptide was calculated using followaggation:

Fraction of dipeptide = total number of dipeptide (
Total no. Of allgsible dipeptides (4)

where def(is one out of 400 dipeptides.

DISCUSSION

In general, artificial intelligence (Al) based teatpues suclas SVMs and neural networks are
elegant approaches for the extractdrcomplex patterns from biological sequence dateese
techniquesire highly successful for residue state prediotvbiere fixedvindow/pattern length is
used [42]. The major limitation tiie Al techniques is that they need patterns/inpits offixed
length. This is the major reason for the failuretloé Al techniques in the classification of
proteins (e.g. subcelluldmcalization prediction, fold recognition) becausailar/homologous
proteins often have variable length. In order t@roeme thiproblem, a fixed-length pattern
must be generated for proteifa, Al techniques to be implemented.

The percentage composition of amino acids, whickegjia fixedpattern length of 20, is
commonly used by Al techniques fitve classification of proteins. This strategy hasrbused
previously for developing the method for subcelilacalizationprediction of eukaryotic and
prokaryotic proteins [47,48]. Howevehis approach provides information only about therm
acid frequency, but no information about the local ordéraminoacids [43]. To provide the
information about frequency and lo@abder of amino acids, dipeptide composition (indteé
aminoacid composition) can be used as the input unilttechniquesDipeptide composition
gives a fixed pattern length of 400. Dipeptatenposition is widely used in the development of
methods forfold prediction [44]. The prediction accuracy oktlipeptidecomposition-based
method should be higher than that of amawd composition based methods [45]. More
information aboutthe protein sequence can be encapsulated usingptide composition.
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Tripeptide composition gives a fixed pattern length 8000, which is commonly used in
similarity searching in BLAST anBASTA (41,46). In the case of tripeptide composifidNN
andSVM are unable to handle the noise due to the latgeber ofinput units and number of
missing tripeptides in a proteiffhe physico-chemical properties of a protein are ayether
alternative way to provide the global informatidnagproteinin the form of fixed pattern length.
The prediction accuracy can further be improvedgdéyising methodologidse encapsulate more
comprehensive information of a protefa SVM-based module (hybrid) was constructed on the
basis oftomprehensive information about proteins includamgino acidcomposition, physico-
chemical properties, dipeptide compositiand PSI-BLAST results. The hybrid module
predicted the subcelluldmcalization of a protein more accurately than tést of themodules
developed in this study. These results confirmedttie approach is capable of capturing more
information abou& protein that is crucial for detecting subcelldtaralizationof proteins. Thus,
providing more comprehensive informaticem be useful in enhancing the prediction accuadcy
fold ortertiary structure prediction methods.

In conclusion, a new method for subcellular locian ofa eukaryotic protein is presented.
This method will nicely complemettte existing subcellular localization predictionthuals. It
will assist in assigning the subcellular locatiarfunctionof proteins more reliably. The authors
believe that the predictianethod presented here would be useful for the atinatofthe piled-
up genomic data.
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