Available online at www.scholarsresearchlibrary.com

Scholars Research Library

Archives of Applied Science Research, 2013, 5 (6):198-202 (http://scholarsresearchlibrary.com/archive.html)

Synthesis, characterization and antimicrobial activity of benzene-(1['], 4[']-diimine)-substituted-4,4-10*H*-diphenothiazine derivatives

K. M. Baste¹ and M. N. Narule*

*Vidya Vikas Art, Commerce and Science College, Samudrapur, Wardha, Maharashtra, India ¹Pravara Rural Engineering College, Loni

ABSTRACT

A novel series of the benzene-(1', 4'-di-imine)-4, 4-di-hydroxy-di-phenyl (**2a-i**), benzene-(1', 4'-di-imine)-substituted-4, 4- diphenylamine (**3a-i**) and benzene-<math>(1', 4'-di-imine)-substituted-10H-di- phenothiazine (**4a-i** $) were prepared by the reaction of 1, 4-di-imine with different aromatic aldehydes in excellent yield. Elemental analysis, 1R, <math>H^1NMR$, $C^{13}NMR$ and mass spectral data established identification of the compounds (**4a-i**) was evaluated for their antimicrobial & antifungal activity.

INTRODUCTION

Schiff bases are typically formed by the condensation of a primary amine & an aldehyde the resultant functional group RHC=N-R is called imine & is particularly for binding metal ions via N- atom lone pair. Phenothazines are pharmaceutical active compounds & have diverse biological application their anti inflammatory and Tranquillizer properties are widely reported. Various phenothiazines have been reported as important antifungal[1], anti-tumor[2], bactericidal and anti-histamine properties[3-5]. Slight modification in phenothiazine nucleus causes marked difference in activity6 and therefore phenothiazine with varied substituents arc being synthesized and as a better medical agents Phenothiazine derivatives possess diverse biological activities like antiparkinsonian[7-8], anticonvulsant [9], antihistaminic[10], antihelmatic[11], antiviral[12], antiparasitic[13] and CNS depressant[14].

MATERIALS AND METHODS

Melting points were taken in open capillary tubes and are uncorrected. IR spectra were run in KBr pellets on a Perkin-Elmer 157 spectrometer. H NMR spectra were recorded in $CDCl_3$ on a Bruker-Variah 300MHz FT NMR spectrometer using TMS as internal standard. Purity of the compounds was checked by TLC on silica gel G plates and the spots were located by exposure to iodine vapours. The characterization data of the compounds is given in **Table –II.**

H = H = H = H = H = H = H = H = H = H =													
Comm	R*	Mol Earmula	M. Pt (°C)	RF Value Eluent*	% Yield	Analysis Found (Calcd)%							
Comp.	ĸ	Mol. Formula				С	Н	N					
4a	Н	$C_{32}H_{22}N_4S_2$	152°	0.90	70	79.1 (79.3)	5.5 (5.4)	7.1 (7.0)					
4b	2-OH	$C_{30}H_{24}N_4O_2S_2$	182°	0.71	65	67.5 (67.4)	4.7 (4.6)	6.0 (6.1)					
4c	3-OH	$C_{30}H_{24}N_4O_2S_2$	137°	0.75	67	67.5 (67.4)	4.7	6.0 (6.1)					
4d	4-OH	$C_{30}H_{24}N_4O_2S_2$	153°	0.82	62	67.5	4.7	6.0					
4e	2-NO ₂	$C_{30}H_{24}N_6O_2S_2$	142°	0.77	57	(67.4) 64.4	(4.6) 4.1	(6.1) 11.5					
ΨC	2-1102	C301124146O2S2	142	0.77	51	(64.1)	(4.0)	(11.4)					
4f	3-NO ₂	$C_{30}H_{24}N_6O_2S_2\\$	136°	0.54	62	64.4 (64.1)	4.1 (4.0)	11.5 (11.4)					
4g	4-NO ₂	$C_{30}H_{24}N_6O_2S_2$	129°	0.86	52	64.4	4.1	11.5					
.9		- 5024- 10 - 26-2				(64.1)	(4.0)	(11.4)					
4h	2-Cl	$C_{30}H_{24}N_{4}S_{2}Cl \\$	143°	0.75	64	67.4	4.3	6.9					
						(67.3)	(4.2)	(6.2)					
4i	4-Cl	$C_{30}H_{24}N_{4}S_{2}Cl \\$	157°	0.78	59	67.4 (67.3)	4.3 (4.2)	6.9 (6.2)					
	* Eluents for TLC: Benzene – acetone (6 : 4) for 4a-i												

Table - II Characterization data of compounds 4a -i

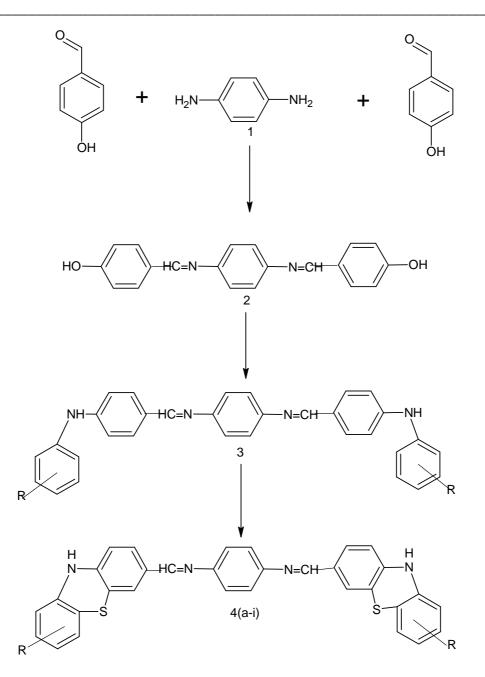
Solvent for crystallization; aq. ethanol for 4a-i.

General procedure for preparation of compounds

I. Synthesis of benzene-(1['], 4 [']-di-imine)-4, 4-di-hydroxy-di-phenyl.

A mixture of 1, 4 di-imine (1 mole) and 4-hydroxy benzaldehyde (2 mole) in ethanol (25 ml) was refluxed for 6 hrs. A resulting solid material reported which was crystallized from DMF similarly other compounds were also prepared.

II. Synthesis of benzene-(1', 4'-di-imine)-substituted-4, 4- diphenylamine.


A mixture of Benzene-(1', 4' - di-imine)-4, 4-di-hydroxy-di-phenyl **1** (1 mole) & different anilines (2 mole) methanol was refluxed for 3 hrs and resulting solid was washed and crystallized from DMF similarly other compound were also prepared.

Ill. Synthesis of benzene-(1', 4'-di-imine)-substituted-10*H*-4, 4-10*H*-di-phenothiazine.

A mixture of Benzene-(1[']. 4[']-di-imine)-substituted-4, 4- diphenylamine (0.01 mole), sulphur (0.1 mole) and Iodine (0.5 g) was heated at 1200C in an oil bath for 2 hr. reaction mixture of Benzene-(1['], 4[']-di-imine)-substituted-10*H*-4, 4-di-phenothiazine was obtain, then crushed into fine powder & washed with ethanol and recrystallized from DMF. **4a:** (M. P. 152° yield 70 %). IR(KBr): 3322 (N-H-phenothiazine), 2945 (C-H-Aromatic stretch), 1792.9, 1714, 1650, 1524, 783 (C-S); H¹NMR (300MHz DMSO) δ 2.34, 4.22, 3.52; ¹³C NMR(300MHz, DMSO-*d*₆) 14.1, 13.2, 13.6, 22.0, 37.9, 38.2, 34.5, 39.4, 40.0, 58.5, 76.8, 77.2, 77.6, 111.8, 159.1, 126.2, 137.3, 160.2, 162.1.

4b: (M. P. 182° yield 65%). IR(KBr): 3333 (N-H-phenothiazine), 2944 (C-H-Aromatic stretch), 1742.9, 1714, 1640, 1552, 1332, 745 (C-S); H¹NMR (300MHz DMSO) δ 2.46, 4.28, 3.54; ¹³C NMR(300MHz, DMSO-*d*₆), 11.3, 13.4, 13.4, 27.0, 38.9, 39.2, 39.5, 39.7, 40.0, 40.3, 58.5, 76.8, 77.2, 77.6, 111.8, 119.1, 126.2, 134.3, 162.2, 165.5.

4c :(M. P.137° yield 67 %.). IR(KBr): 3444 (N-H-phenothiazine), 2957 (C-H-Aromatic stretch), 1752.9, 1754, 1650, 1555, 1336, 785 (C-S); H¹NMR (300MHz DMSO) δ 2.56, 4.58, 3.55;¹³C NMR(300MHz, DMSO-*d*₆) 11.5, 13.5, 13.9, 27.0, 38.9, 34.2, 39.5, 39.7, 40.0, 40.3, 58.5, 76.8, 77.2, 77.6, 111.8, 119.1, 126.2, 137.3, 162.2, 164.6.

R=H, 2-OH, 4-OH, 2-NO₂, 4-NO₂, 3-NO₂, 2-Cl, 4-Cl, -OCH₃, -N(CH₃)₂.

Scheme-I

4d: (M. P. 153° yield 62 %.). IR(KBr): 3327 (N-H-phenothiazine), 2967 (C-H-Aromatic stretch), 1762.9, 1714, 1650, 1362, 765 (C-S), 706 ; H¹NMR (300MHz DMSO) δ 2.66, 4.28, 3.54;¹³C NMR(300MHz, DMSO- d_6), 11.3, 13.4, 13.9, 27.0, 38.9, 34.2, 39.5, 39.7, 40.0, 46.3, 58.5, 76.8, 77.2, 77.6, 111.8, 119.1, 126.2, 137.3, 166.2, 165.3.

Scholars Research Library

4e: (M. P. 142° yield 57 %.). IR(KBr): 3360 (N-H-phenothiazine), 2966 (C-H-Aromatic stretch), 1792.9, 1714, 1650, 1362, 785 (C-S) 766; H¹NMR (300MHz DMSO) δ 2.56, 4.28, 3.54; ¹³C NMR(300MHz, DMSO- d_6), 11.3, 13.6, 13.9, 26.0, 38.9, 39.2, 39.5, 39.7, 40.0, 40.3, 58.5, 76.8, 77.2, 77.6, 111.8, 119.1, 126.2, 137.6, 162.2, 166.1.

4f: (M. P. 136° yield 62 %.). IR(KBr): 3326 (N-H-phenothiazine), 2967 (C-H-Aromatic stretch), 1792.9, 1714, 1650, 1332, 785,726; H¹NMR (300MHz DMSO) δ 2.56, 4.28, 3.54; ¹³C NMR(300MHz, DMSO-*d*₆), 11.3, 13.4, 12.9, 25.0, 38.9, 39.2, 39.5, 39.7, 40.0, 40.3, 58.5, 76.8, 77.2, 77.6, 111.8, 119.1, 123.2, 137.3, 164.2, 165.3.

4g: (M. P. 129° yield 52 %.). IR(KBr):3552 (N-H-phenothiazine), 2959 (C-H-Aromatic stretch), 1792.9, 1714, 1650, 1332, 755 (C-S); H¹NMR (300MHz DMSO) δ 2.56, 4.25, 3.54; ¹³C NMR(300MHz, DMSO-*d*₆), 11.3, 13.4, 13.9, 27.0, 38.9, 35.2, 39.5, 39.7, 40.5, 40.3, 58.5, 75.8, 77.2, 77.6, 111.8, 115.1, 126.2, 137.3, 162.2, 165.0.

4h: (M. P. 143° yield 64 %.). IR(KBr): 3390 (N-H-phenothiazine), 2967 (C-H-Aromatic stretch), 1792.9, 1714, 1670, 1379, 775 (C-S). H¹NMR (300MHz DMSO) δ 2.56, 4.28, 3.54, ¹³CNMR(300MHz,DMSOd₆), 11.3,13.4,13.9,27.0,38.9,39.2,39.5,39.7,40.0,40.3,57.5,6.8,77.2,77.6,111.8,119.1,126.2,137.3,167.2.

4i: (M. P. 157⁰ yields 59 %.). IR(KBr): 3335(N-H-phenothiazine), 2961 (C-H-Aromatic stretch), 1742.9, 1744, 1650, 1332, 785 (C-S), 518; H¹NMR(300MHz DMSO) δ 2.54, 4.28, 3.54; ¹³CNMR(300MHz,DMSOd₆), 11.4,13.4,13.9,7.0,38.9,9.2,39.5,39.7,40.0,40.3,58.5,76.8,77.2,77.6,111.4,119.1, 124.2,147.

RESULTS AND DISCUSSION

In view of these observations, it was thought worthwhile to synthesize several compounds in which benzene-(1', 4'-di-imine)-4, 4-di-hydroxy-di-phenyl, benzene-(1', 4'-di-imine)-substituted-4, 4- diphenylamine, benzene-(1', 4'-di-imine)-substituted-10*H*-4, 4-10*H*-di-phenothiazine have been linked with new moiety

	Antibac	terial activit	Antifungal activity		
Compd	S.aureus	B. substillis	E. coli	C. albicans	A. niger
4 a	+ +	++	+	+ +	++
4b	+	++ +	+ + +	+++	+++
4c	-	++	+ + +	+ ++	++
4d	+ ++	++	++	+ +	++
4e	+	++	+	+++	++ +
4f	++	+++	++	+ + +	++
4 g	+ + +	+ +	-	++	++
4 h	++	-	+	-	++ +
4i	+ + +	++	+ + +	++ +	-
SM	+ + +	+ + +	+ + + +		
GF				+ + + +	+++
SM (Stre	ptomycin) and	GF (Griesofu	ılvin). The	inhibition diar	neter in
	<6, (+) 7-9, (++)				

Table I-Antibacterial and antifungal activities of compounds 4a-i

The reaction sequence leading to the formation of desired heterocyclic compounds are outlined in **Scheme-I**. The starting material benzene-(1', 4'-di-imine)-4, 4-di-hydroxy-di-phenyl (**2a-i**) was prepared by the reaction of substituted aldehydes with 1, 4-di-imine in presence of ethanol. Synthesis of benzene-(1', 4'-di-imine)-substituted-4, 4- diphenylamine (**3a-i**) by reaction of benzene-(1', 4'-di-imine)-4, 4-di-hydroxy-di-phenyl (**2a-i**) with different aromatic aniline in presence of ethanol. The substituted benzene-(1', 4'-di-imine)-substituted-10*H*-4, 4-10*H*-di-phenothiazine (4a-i) was prepared by reaction of benzene-(1', 4'-di-imine)-substituted-4, 4- diphenylamine (**3a-i**)

Scholars Research Library

K. M. Baste and M. N. Narule

with sulphur and Iodine in the presence of DMF. The IR, H^1NMR , C^{13} NMR, Mass spectra of the benzene-(1', 4' - di-imine)-substituted-10*H*-4, 4-10*H*-di-phenothiazine (4a-i) were recorded.

Biological studies

Comparative study of 1, 4 di-imine with different aromatic aldehydes & Benzene-(1', 4'-di-imine)-substituted-4,4-10*H*-di-phenothiazine (**4a-i**) have been observed by using Norfloxacine and Griseofulvine as standards. The enhancement in biological activity of compound (1) as compared with the newly synthesized (**4a-i**) has been observed. The synthesized compounds were tested at 100g/ml concentration against Escherichia *coli*, Staphylococcus *aureus*, Ps. *acruginosa*, P.*vulgaris*, A. *niger* and C. *albicans* for its antibacterial and antifungal screening as shown in **Table-I**.

CONCLUSION

It is concluded for scheme that and efficient method for the synthesis of Benzene-(1, 4–di–imine)-substituted-10*H*-4', 4'-di-phenothiazine **4a-i** with excellent yield have been developed. The result of this study indicate that the present synthetic method is a simple efficient, inexpensive and easy synthesis of biologically active compounds Benzene-(1, 4–di–imine)-substituted-10*H*-4', 4'-di-phenothiazine **4a-i**. These compounds showing good result tested at 100 mg/ml concentration against *E. coli, S. aureus, Ps. acruginosa, P. vulgaris, A. niger* and *C. albicans* as compare to simple di-amine.

Acknowledgment

The author are thankful to Principal, Dr. R. S. Bobhate, Vidya vikas Art, Commerce and Science College, Samudrapur and Head of Dept. & Principal of Pravara Rural Engineering College, Loni for providing research facilities.

REFERENCES

- [1] Y. IJeno. Y. Takeuchi, J. KoshJtani and T. Yonhida, J. Hetrocyclic Chem, 1978, 15, 721.
- [2] E. R. Niehl, S. P. Khanapure, U. Siriwadane, M. A. Tschantz, Hetrocyclic, 1989, 29, 485.
- [3] N. Motohashi, *Elsevier.*, Amsterdam, 1988,774.
- [4] W. J. Evans and S. J. Smiles, J. Chem. Soc., 1935, 181.
- [5] W. J. Evans and S. J. Smiles, J. Chem. Soc., 1935, 1.263.
- [6] C. F. Weight and S. J. Smiles., J. Chem. Soc., 1935, 340.
- [7] Harwood P D and Jestad A C, J. Parasital, 1938, 24, 16-18.
- [8] Halpern B N, J. Am Med Assoc, 1945, 129, 1219-1222.
- [9] Kalinowsky L B and Hoch P H, Somatic treatment in phychiatry: Academic press. New York 1961, 122-132.
- [10] Clane N T, Witten L K and Eilmer D S, Aust. Ver. J, 1947, 23, 344-346.
- [11] Douglass J R and Baker N F, J. Am. vet, 1956, 17, 318-320.
- [12] Ddhlbom R and Ekstramd T, Arch Intern Pharmacodynamics, 1966, 159, 70-78.
- [13] Craig J C and Tate H F, Progr Drug Res, 1901, 3, 75-78.
- [14] Janssen P A J and Niemegeers C J E, Arzneim Forsch, 1965, 15, 1196-1199.