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Premeltons are examples of emergent structures (i.e., structural solitons) that arise spontaneously in DNA due to the presence of nonlinear 
excitations in its structure. They are of two kinds: B-B (or A-A) premeltons form at specific DNA-regions to nucleate site-specific DNA 
melting. These are stationary and, being globally nontopological, undergo breather motions that allow drugs and dyes to intercalate into 
DNA. B-A (or A-B) premeltons, on the other hand, are mobile, and being globally topological, act as phaseboundaries transforming B- into 
A- DNA during the structural phase-transition. They are not expected to undergo breather-motions. A key feature of both types of 
premeltons is the presence of an intermediate structural-form in their central regions (proposed as being a transition-state intermediate in 
DNAmelting and in the B- to A- transition), which differs from either A- or B- DNA. Called beta-DNA, this is both metastable and 

hyperflexible – and contains an alternating sugar-puckering pattern along the polymer-backbone combined with the partial-unstacking (in 
its lower energy-forms) of every other base-pair. Beta-DNA is connected to either B- or to A- DNA on either side by boundaries 
possessing a gradation of nonlinear structural-change, these being called the kink and the antikink regions. The presence of premeltons in 
DNA leads to a unifying theory to understand much of DNA physical-chemistry and molecular biology. In particular, premeltons are 
predicted to define the ends of genes in naked-DNA and DNA in active-chromatin, this having important implications for understanding 
physical aspects of the initiation, elongation and termination of RNA-synthesis during transcription. For these and other reasons, the model 
will be of broader interest to the general audience working in these areas. The model explains a wide variety of data, and carries within it a 
number of experimental predictions – all readily testable – as will be described in my talk Ultimately, one wishes to determine how 

genes—and the proteins they encode—function in the intact organism. Although it may sound counterintuitive, one of the most direct ways 
to find out what a gene does is to see what happens to the organism when that gene is missing. Studying mutant organisms that have 
acquired changes or deletions in their nucleotide sequences is a time-honored practice in biology. Because mutations can interrupt cellular 
processes, mutants often hold the key to understanding gene function. In the classical approach to the important field of genetics, one 
begins by isolating mutants that have an interesting or unusual appearance: fruit flies with white eyes or curly wings, for example. Working 
backward from the phenotype—the appearance or behavior of the individual—one then determines the organism's genotype, the form of 
the gene responsible for that characteristic. Today, with numerous genome projects adding tens of thousands of nucleotide sequences to the 
public databases each day, the exploration of gene function often begins with a DNA sequence. Here the challenge is to translate sequence 

into function. One approach, discussed earlier in the chapter, is to search databases for well-characterized proteins that have similar amino 
acid sequences to the protein encoded by a new gene, and from there employ some of the methods described in the previous section to 
explore the gene's function further. But to tackle directly the problem of how a gene functions in a cell or organism, the most effective 
approach involves studying mutants that either lack the gene or express an altered version of it. Determining which cellular processes have 
been disrupted or compromised in such mutants will then frequently provide a window to a gene's biological role. In this section, we 
describe several different approaches to determining a gene's function, whether one starts from a DNA sequence or from an organism with 
an interesting phenotype. We begin with the classical genetic approach to studying genes and gene function. These studies start with a 
genetic screen for isolating mutants of interest, and then proceed toward identification of the gene or genes responsible for  the observed 
phenotype. We then review the collection of techniques that fall under the umbrella of reverse genetics, in which one begins with a gene or 

gene sequence and attempts to determine its function. This approach often involves some intelligent guesswork—searching for 
homologous sequences and determining when and where a gene is expressed—as well as generating mutant organisms and characterizing 
their phenotype. Before the advent of gene cloning technology, most genes were identified by the processes disrupted when the gene was 
mutated. This classical genetic approach—identifying the genes responsible for mutant phenotypes—is most easily performed in organisms 
that reproduce rapidly and are amenable to genetic manipulation, such as bacteria, yeasts, nematode worms, and fruit flies. Although 
spontaneous mutants can sometimes be found by examining extremely large populations—thousands or tens of thousands of individual 
organisms—the process of isolating mutants can be made much more efficient by generating mutations with agents that damage DNA. An 
alternative approach to chemical or radiation mutagenesis is called insertional mutagenesis. This method relies on the fact that exogenous 

DNA inserted randomly into the genome can produce mutations if the inserted fragment interrupts a gene or its regulatory sequences. The 
inserted DNA, whose sequence is known, then serves as a molecular tag that aids in the subsequent identification and cloning of the 
disrupted gene. In Drosophila, the use of the transposable P element to inactivate genes has revolutionized the study of gene function in the 
fruit fly. Transposable elements have also been used to generate mutants in bacteria, yeast, and in the flowering plant Arabidopsis. 
Retroviruses, which copy themselves into the host genome, have been used to disrupt genes in zebrafish and in mice. 
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