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ABSTRACT  
 
We obtain the classical critical antiferromagnetic---paramagnetic and antiphase---paramagnetic 
phase boundaries of the Axial Next Nearest Neighbour Ising Model in external magnetic fields. 
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INTRODUCTION 
 
Frustration as a result of competitive interactions in magnetic models has remained a subject of 
active research [1,2,3]. The most popular model in which the effects of regular frustration on spin 
models have been extensively studied is the axial next nearest neighbour Ising (ANNNI) model 
[4,5]. The ANNNI model is described by a system of Ising spins with nearest neighbour 
interactions along all the lattice directions (yx,  and z ) as well as a competing next nearest 
neighbour interaction in one axial ( e.g. z ) direction. 
 
Recently, there has been an increased interest in transverse Ising models in which the competition 
is generated by the presence of an external longitudinal field [1,5]. 
 
In this paper we will be concerned with an Ising system in which frustration is due to the presence 
of an external transverse field as well as competitive interactions from next nearest neighbour 
spins and the influence of an external longitudinal field. Specifically, we will study the 
one-dimensional ANNNI model in an external transverse magnetic field xh  and a uniform 

longitudinal field zh , described by the Hamiltonian 
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where j  is the next nearest neighbour exchange interaction, iS  are the usual spin-
2

1
 operators 

and the magnetic fields xh  and zh  are measured in units where the splitting factor and Bohr 

magneton are unity. 
 
While so far almost exclusively ferromagnetically coupled spins have been discussed in the 
literature, we will focus this paper on the antiferromagnetic coupling ( 0>j ). 
 
A useful insight into the nature of the phase diagram of the ANNNI model in the presence of two 
external magnetic fields, described by the Hamiltonian (1) may be gained by first studying its 
ground state in a classical fashion. This precisely is the aim of this paper. In the next section we 
will obtain and discuss the possible classical ground state configurations of the ANNNI model in 
two fields. 
 

RESULTS AND DISCUSSION 
 
In the classical approximation, spins are represented as three-dimensional vectors [1,6,7]. For this 

purpose let us consider a system of N  spins 
2

1
. The classical ground state is found from a 

configuration in which the spin vectors lie in the XZ  plane with the N  spins pointing 
respectively at angles 1ϕ  , 2ϕ , K  and Nϕ  with respect to the X  axis. 

 
2.1  The Classical Ground State of the ANNNI model 
 
In the absence of the fields xh  and zh , we have the usual ANNNI model, described by the 

Hamiltonian 
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The energy corresponding to the Hamiltonian (2) in the classical description is given by  
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where we have applied periodic boundary conditions for simplicity. It is also convenient to assume, 
without loss of generality, that N  is a multiple of 4 . 
The energy E  as given in (3) is a minimum if either 
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    1.   1,,1,2,=1,=sinsin 1 −−+ Niii Kϕϕ  

               and 1=sinsin 1 −ϕϕN  

or  
    2.   2,1,2,=1,=sinsin 2 −−+ Niii Kϕϕ , 

               1=sinsin 2 −ϕϕN  and 1=sinsin 11 −− ϕϕN  .  

 
Condition 1 implies that  
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This corresponds to antiferromagnetic alignment with the ground state energy given by 
 
 ( ).14/1=/ jNEAF −−  (5) 
 
The second possibility for a ground state configuration as stated in condition 2 yields the following 
solution: 
 
 1/,0,1,2,=,2/== 42414 −++ Nkk k Kπϕϕ  

 ./,1,2,=,2/== 4414 Nkk k Kπϕϕ −−  (6) 

 
This is the period 4  antiphase configuration. The corresponding ground state energy is then given 
by: 
 
 .4/=/>2< jNE −  (7) 

 
Comparing equation (5) and equation (7) we see that the classical ground state of the one 
dimensional ANNNI model (2) is antiferromagnetic for values of the next nearest neighbour 

exchange interaction 
2

1
<j  and the >2<  antiphase for 

2

1
>j . The ground state is degenerate 

when 
2

1
=j . 

 
2.2  The Classical Ground State of the ANNNI model in external fields 
 
The presence of the transverse field xh  or the longitudinal field zh  or both causes the ground state 

structure to change. The corresponding classical energy to the full Hamiltonian (1) is then given by 
 
 



Kunle Adegoke                                                                     Arch. Phy. Res., 2011, 2 (1):176-182  
______________________________________________________________________________ 

179 

Scholar Research Library 

 
 

 2111 sinsin
4

sinsin
4

sinsin
4

1
= ϕϕϕϕϕϕ NNN

jj
E ++ −  

                   2

2

1=
1

1

1=

sinsin
4

sinsin
4

1
+

−

+

−

∑∑ ++ ii

N

i
ii

N

i

j ϕϕϕϕ  

                            .sin
2

1
cos

2

1

1=1=
iz

N

i
ix

N

i

hh ϕϕ ∑∑ −−  (8) 

 

When 
2

1
<j  the ground state structure changes continuously from the ordered antiferromagnetic 

states described by αφϕϕ sayN ==== 131 −K  and βφϕϕ sayN ==== 42 K  to the 

paramagnetic states having constant magnetization. Thus from equation (8) the antiferromagnetic 
states have energies given by  
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The order parameter, staggered magnetization ±

zM , defined by 
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exists everywhere in the antiferromagnetic region and vanishes on the transition line from the 
antiferromagnetic phase to the paramagnetic phase. Thus, for a given next nearest neighbour 

exchange interaction 
2

1
<j , the transition line is the set of all xh  and zh  for which AFE  in 

equation (9) is a minimum, with the additional requirement that the order parameter vanishes,  i.e. 
that βα =  in equation (10). Minimizing AFE  and taking limit βα →  in the resulting critical 
equations, we find that the antiferro--para phase transition occurs on the line: 
 
 ( ) αcos1= 3jhx −  

 ( ).sincos1sin= 22 ααα jhz ++  (11) 
 

For 
2

1
>j  there is a continuous phase transition from the ordered >2<  antiphase states described 

by αϕϕ saykk == 2414 ++  for 1/4,0,1,2,= −Nk K  and βϕϕ saykk == 414 −  for /4,1,2,= Nk K  to 

the paramagnetic states. Thus from equation (8) the >2<  antiphase states have energies given by  
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The order parameter,  
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 remains finite everywhere in the >2<  antiphase region and vanishes on the transition line. Thus, 
minimizing equation (12) and using the condition βα →  in the resulting critical equations, the 
antiphase--para phase boundary is given by the line  
 ,cos= 3αjhx  

 ( ).)cos(11sin= 2αα ++ jhz  (14) 
 
The antiferromagnetic to paramagnetic boundary as given by equation (11) is plotted in figure 1 
while the antiphase to paramagnetic boundary as given by equation (14) is plotted in figure 2. 
 
 

 
Figure 1: Classical antiferro to paramagnetic phase boundary in the one dimensional ANNNI model in two 

fields 
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Figure 2: Classical antiphase to paramagnetic phase boundary in the one dimensional ANNNI model in two 

fields 

 

The two lines equation (11) and equation (14) coincide when 
2

1
=j  as expected. We remark also 

that the special case 0=j  (no next nearest neighbour competition) is discussed in [1]. 
 

CONCLUSION 
 We have obtained the classical phase boundaries of the one dimensional ANNNI model in two 
fields xh  and zh . We found the critical line separating the antiphase ground state from the 

paramagnetic phase. We also found the antiferromagnetic--paramagnetic transition line. 
 
The classical results represent of course only very rough approximations of the true behaviour of 
the ANNNI model in mixed fields. The useful insight gained into the nature of the classical ground 
states and phase transitions of the model will however serve as a starting point for a more accurate 
quantum mechanical investigation, as was done for example in [8]. 
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