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ABSTRACT

We obtain the classical critical antiferromagnetic---paramagnetic and anti phase---paramagnetic
phase boundaries of the Axial Next Nearest Neighbour Ising Model in external magnetic fields.
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INTRODUCTION

Frustration as a result of competitive interactionsnagnetic models has remained a subject of
active research [1,2,3]. The most popular modethich the effects of regular frustration on spin
models have been extensively studied is the ae=l nearest neighbour Ising (ANNNI) model
[4,5]. The ANNNI model is described by a systemlsihg spins with nearest neighbour
interactions along all the lattice directiong,y andz) as well as a competing next nearest

neighbour interaction in one axia¢.g. z) direction.

Recently, there has been an increased interaestriaverse Ising models in which the competition
is generated by the presence of an external ladigdifield [1,5].

In this paper we will be concerned with an Isingtsyn in which frustration is due to the presence
of an external transverse field as well as comipetiinteractions from next nearest neighbour
spins and the influence of an external longitudifiald. Specifically, we will study the
one-dimensional ANNNI model in an external transeemagnetic fieldh, and a uniform

longitudinal field h,, described by the Hamiltonian
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H=YsS+iY 'S, -hY S -hY s (1)

. . . 1
where | is the next nearest neighbour exchange intergc8oare the usual spn%— operators

and the magnetic fields, andh, are measured in units where the splitting factoal &ohr
magneton are unity.

While so far almost exclusively ferromagneticallgupled spins have been discussed in the
literature, we will focus this paper on the antibenagnetic coupling [ >0).

A useful insight into the nature of the phase diagof the ANNNI model in the presence of two

external magnetic fields, described by the Hamiéon(1) may be gained by first studying its

ground state in a classical fashion. This precigethe aim of this paper. In the next section we
will obtain and discuss the possible classical gbstate configurations of the ANNNI model in

two fields.

RESULTSAND DISCUSSION

In the classical approximation, spins are repregkas three-dimensional vectors [1,6,7]. For this

purpose let us consider a systemN)fspins%. The classical ground state is found from a

configuration in which the spin vectors lie in t& plane with theN spins pointing
respectively at angleg, , ¢,, ... and @, with respect to theX axis.

2.1 TheClassical Ground State of the ANNNI model

In the absence of the fieldg andh,, we have the usual ANNNI model, described by the
Hamiltonian

H o = ZSZSil + JZSZSZQ . (2)
The energy corresponding to the Hamiltonian (Zh&nclassical description is given by
E= %sin¢N sing, +%sin¢5N_lsin¢1 +isin¢N sing,

= je
+ZZsm¢i sing, ., t > sing,sing,, . (3)
i=1 i=1

where we have applied periodic boundary conditfonsimplicity. It is also convenient to assume,
without loss of generality, thall is a multiple of4.
The energyE as given in (3) is a minimum if either
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1. sing sing,,=-1, i=12,..,N-1,
anasing, sing, = -1
or
2. sing sing,,=-1, i=12,...,N- 2

sing, sing, = - landsing,_, sing, =— 1.
Condition 1 implies that
T 12, i=1,35,..,N-1

=0 i iz246. N

4)
This corresponds to antiferromagnetic alignmenhhe ground state energy given by
Ex IN= _1/4(1_ J) (5)

The second possibility for a ground state confiareas stated in condition 2 yields the following
solution:

Ouss =Pusr =12, k=0,1,2,..,n/4-1
P =Py =112, k=1.2,..,n/a. (6)

This is the periodd antiphase configuration. The corresponding gratate energy is then given
by:

E_,. IN=-j/4. 7)

<2>

Comparing equation (5) and equation (7) we see ttmatclassical ground state of the one
dimensional ANNNI model (2) is antiferromagnetia fealues of the next nearest neighbour

exchange interactior <% and the< 2> antiphase forj >%. The ground state is degenerate
when j = l.
2

2.2 TheClassical Ground State of the ANNNI model in external fields

The presence of the transverse fib|dor the longitudinal fieldh, or both causes the ground state
structure to change. The corresponding classi@bgrto the full Hamiltonian (1) is then given by
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E= %sin¢N sing, +%sin¢N_lsin¢l +%sin¢N sing,
LNt J N-2
+Zzsm¢i Sin¢i+l+ZZSin¢i sing,,,
i=1 i=1

—%ihx cosd —%ihz sing,. 8)

.1 . . .
When j < > the ground state structure changes continuousiy the ordered antiferromagnetic

states described byp, =¢,=...=@_,=saya and ¢,=¢,=...=@, =say [ to the
paramagnetic states having constant magnetiztlars from equation (8) the antiferromagnetic
states have energies given by

E,./N = %sinasin[ﬂé(sinza +sin?B)-— (cosa +cosp)

Ny

(sina +sinp). €)

Ny =)

The order parameter, staggered magnetizatidgn defined by
. 1/ .
M3 =3 (sina —sinB)

:sin(a;ﬂjco{a;ﬁj, (10)

exists everywhere in the antiferromagnetic regiod @anishes on the transition line from the
antiferromagnetic phase to the paramagnetic phEses, for a given next nearest neighbour

exchange interactior) <%, the transition line is the set of dll and h, for which E,; in

equation (9) is a minimum, with the additional regqment that the order parameter vanishes,
that o = S in equation (10). Minimizingg,- and taking limita - S in the resulting critical
equations, we find that the antiferro--para phasesition occurs on the line:

h=(-j)coda

h, = sina(1+ coda+j sinza). (11)

For j > 5 there is a continuous phase transition from them@d< 2 > antiphase states described

by @i =Pu., =saya for k=0,1,2,..,N4-1and g, , =¢, =say § for k=1,2,...,N/4 to
the paramagnetic states. Thus from equation (8xthe antiphase states have energies given by
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E_./N= %(sina +sin ) +isinasin,8—%(cosa +cosp)

(sina +sinB). (12)

ENgR=y

The order parameter,

2

remains finite everywhere in the2 > antiphase region and vanishes on the transitien Thus,
minimizing equation (12) and using the condition- £ in the resulting critical equations, the

antiphase--para phase boundary is given by the line
h =jcosa,
h, =sina(L+ j(1+ coda)) (14)

M ;" =sin a-p co a+p , (13)
2

The antiferromagnetic to paramagnetic boundaryiaengoy equation (11) is plotted in figure 1
while the antiphase to paramagnetic boundary anddy equation (14) is plotted in figure 2.

14 1 para

antiferro

hy L-j

Figure 1. Classical antiferroto paramagnetic phase boundary in the one dimensional ANNNI model in two
fields
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1+f
para
h,
antiphase
T
Figure 2: Classical antiphaseto paramagnetic phase boundary in the one dimensional ANNNI model in two

fields

The two lines equation (11) and equation (14) admevhen | :% as expected. We remark also

that the special casg=0 (no next nearest neighbour competition) is dised$s [1].

CONCLUSION
We have obtained the classical phase boundarigdseaine dimensional ANNNI model in two

fields h, and h,. We found the critical line separating the antgehayround state from the
paramagnetic phase. We also found the antiferroetagrparamagnetic transition line.

The classical results represent of course only wvaungh approximations of the true behaviour of

the ANNNI model in mixed fields. The useful insigigined into the nature of the classical ground
states and phase transitions of the model will lv@weerve as a starting point for a more accurate
guantum mechanical investigation, as was donexamele in [8].
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