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ABSTRACT

With the availability of high-density marker maps and cost-effective genotyping, genomic selection(GS) methods
may provide faster genetic gain than can be achieved by current selection methods based on phenotypes and the
pedigree. Many schemes have been proposed for continuous traits, but methods for threshold traits are still scarce.
Accuracies for breeding values were investigated for a typical dairy cattle breeding setting by using genomic and
classic methods. Here we investigate some of the factors driving the accuracy of genomic selection, namely marker
numbers and heritability. In classic method, we estimated true breeding value(TBV) using ASReml from univariate
analysis model for threshold traits. Marker characteristics and linkage disequilibrium were obtained by simulation
to achieve a mutation drift balance. Sx generations with only genotypes were generated to examine accuracy
changes rate over time. With h?= 0.05, accuracies for genomic and classic path ranged from 0.22 to 0.45 and 0.15
to .035 respectively. For genomic and classic methods with h?= 0.30, accuracies varied from 0.27 to 0.61 and 0.22
to 0.44 respectively. With h?= 0.80, accuracies for genomic and classic approaches ranged from 0.21 to 0.73 and
0.36 to .055 respectively. Results showed accuracies of breeding value by genomic selection wer e sufficiently high to
implement dairy selection schemes testing in which case a data time-lag of two to three generations may be present.
Using traditional method for estimating TBV resulted in reduced accuracies compared with direct genomic
selection.

Keywords: accuracy, genomic selection, heritability, markbreshold traits.

INTRODUCTION

To overcome the problem with traditional markeristesl selection (MAS) that only covers a limitedportion of
total genetic variance by the markers, a new teghencalled genomic selection was presented by Mssgniet al.
[16] ,which traces all quantitative trait loci(QThy tracing all chromosome segments through higelyse markers
covering the entire genome.
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GS has became feasible very recently with the aliiily of high-through put genotyping technolo@stimation of
genomic breeding value(GEBV) is the key step in fBBmany of approaches have been proposed [2,1%,5.6].
To estimate GEBV, a prediction equation based ensthgle nucleotide polymorphism(SNP) is first ded. The
whole genome is divided into small segments, tiiectf of which are estimated in a reference pojian which
animals are both phenotyped and genotyped. Theneffiects of all loci that contribute to genetiaiation are
captured, even if the effects of the individualsilare very small. In subsequent generations, drsiroan be
genotyped for the markers to determine which chsonte segments they carry, and the estimated efbédtse
segments the animal carries can then be summesisat® whole genome to predict the GEBV. This hrepdalue
is termed a GEBV.

Meuwissen et al. [16] demonstrated in simulatidret it was possible to achieve accuracies of predibreeding
values from markers alone of 0.85 (where accuracthé correlation between true breeding value (TR
estimated breeding value (EBV), and the reliabibtthe square of this result).

Most of the estimation methods focus on continutnasts. However, many traits of importance in ardima
production, such as litter size of large mammaégrede of calving difficulty and resistance to d&mapresent a
discrete(categorical) distribution of phenotypesd are often termed threshold traits. Obviouslg, @S methods
proposed for continuous traits cannot be adequafglied for such kind of traits.

This research was performed to investigate theracgwf breeding values from genomic selectionafdhreshold
trait is higher than classical method or no andameunt of their difference.

MATERIALS AND METHODS

Simulation

A genome consisting 3 chromosomes each with 10GrcMngth with 100, 200, 400, 800 equally spacedlsi
nucleotide polymorphism(SNP) (each 1 cM) and altotanber of 30, 60, 120, 240 QTLs (that scattered o
chromosomes randomly) was generated for each thagai This small genome size was chosen to decithase
calculation time.

Both SNP and QTL were assumed to be biallelic wijal initial allelic frequencies. For these sintiokas, gene
substitution effects for each QTL were assignedioamy from a standard normal distribution, a ~ NIR QTLs
covered total genetic variance and individual tsteeding values. Only additive genetic effect warssidered.

An effective population size of 100 individuals wsimulated, of which 50 were male and 50 were fem@&his
structure was followed by 50 generations of randuoating, implying that each individual had on averago
offspring in the next generation (variance of fansiize was two).

The paternal and maternal haplotypes for each iithaid were generated based on Haldane mappingidmntd
generate recombinant haplotypes. Sires and dathe ipase generation were assumed to be unrelated.

Fifty generations of random mating were practicedenerate sufficient linkage disequilibrium (LDjtlween loci.
Two LD measurements? and D , were used to calculate LD in generation 50,\@samge of all synthetic marker
loci. Markers with a minor allele frequency of <08.were discarded. After the first 50 generatighsdditional
generations (51 to 56) were simulated. Populatias @xpanded to obtain intended population sizenergation 51.
Population size was constant until generation 86.depulation size, 1000 individuals with equal ruenof males
and females in each of the last 6 generations wignelated. Only females of generations 51 through(500
females in each generation) had trait phenotype #ms, were included in the training set accordmglifferent
scenarios.

To investigate the effect of generation distancevben training set and validation set on accuracGBBVS,
females from different generations (distant anémégenerations) were included in training set.

The validation data contained individuals from gatien 56. For simplification, no selection was sdered.
Population structure and parameters used in thelaiion are presented in Table 1.
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Analysis model

For calculation of GEBV, the simple mixed modelirestion method suggested by Meuwissen et al. [18 wsed
assuming that all loci explained and equal amo@inadance (That is, the variance per loedm, iso’m =o%a /n
wherec?a is the total genetic variance ami$ the number of marker loci).

Meuwissen et al. [16] termed this method as bewsali unbiased prediction (BLUP). This assumptioquéé
variance over all loci) is clearly unrealistic. @#n variance may not be equal across markersxXample, major
genes may exist on some chromosomes. However, BEUWick, easy to program and as Meuwissen etlél. [
demonstrated, BLUP performs almost as well as thehnmore advanced and time consuming Bayesian u&tho

The model to estimate the marker effects was
y=Xb+Zm+e (1)

where, y is the vector of observations, b is thetareof means, m is the vector of random markezatf, e is the
vector of random residual effects, X and Z are ficieht matrices. Row elements of Z consist of @ntl 2 for
marker genotype.

Then, the expected value of y is &pd the variance of y is

V(y)=ZIZ'oZ2m+lce (2
(assuming equal variance for each marker).

The mixed model equation (MME) for BLUP is

XX  XZ bl [XYy A

Z'X ZZ+la||m Zy
We consideredu = 6?e/ 6°m as Meuwissen et al. [16]. After obtaining solntfor vector m, GEBV was estimated
as

GEBV, =Zm  (4)

The genetic variance was determined as variancguef breeding values among individuals in genenata
through 55. As haplotyping would increase compatatime with little or no gain in accuracy at higharker
density [13].

We used genotypes rather than haplotypes Each atieduldata set was replicated 10 times and resudre w
averaged across replicates.

True breeding value

We estimated TBV from two path. Once from the abstages, we calculated it simultaneously by GEBMir
genomic path. For estimating TBV from classic pathsed on the suitable single- trait animal modettireshold
traits using ASREML, including the mean as fixeteef in model, breeding values were estimated.

Then we put this breeding value as TBV in accufacyula and calculated its correlation with GEBVazsuracy.
(accuracies were calculated as the correlationdmtvgimulated and classic TBV and GEBV).
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Table 1. Population structure and parameters usechithe simulation.

Parameter Value
Number of chromosome 3
Number of SNP markers per chromosome 100, 20m 880
Genome Length (cM) 300
Marker distance (cM) 1
Number of QTL 30, 60, 120, 240
QTL effects Normal distribution
Recombination Haldane map function
Number of generation 56
Generation 1 to 50, create LD 50 male, 50 female
Generation 51 to 56 500 male, 500 female
Training set Females of generation 51 to 55
Validation set Females of generation 56
Heritability 0.05, 0.30, 0.80

Table 2. Mean (+SE) of homozygosity and linkage désjuilibrium (D’ and r?)
between markers in generation 50.

Parameter Mean + SE
D’ 0.61 +0.003
r 0.18 +0.002
Homozygosity 0.58 +0.002

Table 3. Number of Markers and QTLs in classic methd.

Scenarios Details
A 100 markers, 30 QTL
B 200 markers, 60 QTL
C 400 markers, 120 QTL
D 800 markers, 240 QTL

RESULTS AND DISCUSSION

Results

The presented simulations assumed a small effeptipalation size of Ne = 100, which generates LBvieen the
markers and a QTL and thus causes the marker &ffdtte expected amount of disequilibrium in a stabl
population represents a balance between its crelyodrift and its decay by recombination. In thésearch, six
generations without own performance with threeedéht levels of heritability (0.05, 0.30, 0.80) adifferent
numbers of markers (100, 200, 400, 800) were sitedlsimultaneously.

We examined the effect of calculating true breeding traditional method on accuracy rate and caimpat with
genomic path in different scheme¥l the accuracies of selection are given in tableto 8. Tables 4 to $howed

the correlations between GEBVs and simulated TBY &able 8 presented correlation between GEBVs and
calculating TBV from traditional method.
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The highest accuracy for genomic and classic path @73 and 0.55 respectively. The lowest accui@cithem
was 0.21 and 0.15 respectively. The results showeglaively clear relationship between the humbemafkers
used in the prediction model and the accuraciegsnbee obtained.

The accuracy in genomic selection varied from @222.64 and 0.24 to 0.70 using 100 and 200 maresectively
. Whereas, estimating TBV from classic method tesiuin accuracies ranged from 0.15 to 0.36 and @223 for
100 and 200 markers respectively.

The accuracy ranged from 0.26 to 0.73 and 0.2868 Qsing 400 and 800 markers respectively in géngath.
On the other hand, with estimating TBV by tradiibmapproach, accuracies varied from 0.29 to 0.46@B85 to
0.55 for 400 and 800 markers respectively.

The regression of TBV on EBV become closer to thasmarker density increased. In general, the tienéithe
markers increased the accuracy of estimating tleedimg values as expected. Tables 4 to 7 showeukehig
heritability results in higher accuracies for &ktgenerations in genomic selection.

When markers number increased from 400 to 800 we agoartial decay for accuracies, although we it n
expected it. When we used traditional method fdimeging TBV, with heritability 0.05, 0.30, 0.80 agacies
ranged from 0.15 to 0.35, 0.22 to 0.44 and fron6 ®30.55.

On the other hand, for genomic path, with a heititglof (0.05) the accuracy in generation 51 waé50decreasing
to 0.22 in generation 56. Almost the same pattergre observed for the other values. With a hetitgtof (0.30)
the accuracy in generation 51 was 0.61 decreasiQ¥ in generation 56. With a heritability of§0) the accuracy
in generation 51 was 0.73 decreasing to 0.21 ierggion 56.

Table 4. Accuracies of breeding value in generatiobl to 56 (Number of Markers= 100, Number of QTL =
30) for threshold traits.

Generation 51 52 53 54 55 56
h? = 0.05 0.43 0.27 0.27 0.26 0.24 0.22
h?=0.30 0.60 0.36 0.34 0.31 0.29 0.27
h?=0.80 0.64 0.35 0.33 0.26 0.24 0.21

Table5. Accuracies of breeding value in generatiobl to 56 (Number of Markers = 200, Number of QTL =
60) for threshold traits.

Generation 51 52 53 54 55 56
h? = 0.05 0.42 0.28 0.32 0.28 0.25 0.24
h?=0.30 0.61 0.41 0.42 0.38 0.35 0.34
h? = 0.80 0.70 0.42 0.40 0.34 0.33 0.29

There is a tendency for the average decay to Beehigom generation 51 to 52 than from generati®dndb56. Our
findings indicate that higher heritability resulisalmost higher accuracy for all the generatioh$d®b56.

On the other hand, when we estimated TBV from @tasethod by ASREML, and then, calculated its datien
with GEBV as accuracy of breeding value, we fouoddr values for it rather than when we estimated/ T
genomic selection in all of scenarios.
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Table 6. Accuracies of breeding value in generatiobl to 56 (Number of Markers= 400, Number of QTL =
120) for threshold traits.

Generation 51 52 53 54 55 56
h?=0.05 0.45 0.32 0.31 0.30 0.27 0.26
h?=0.30 0.59 0.42 0.42 0.41 0.37 0.34
h? = 0.80 0.73 0.46 0.44 0.41 0.38 0.36

Table 7. Accuracies of breeding value in generatiofl to 56 (Number of Markers = 800, Number of QTL =
240) for threshold traits.

Generation 51 52 53 54 55 56
h? = 0.05 0.44 0.29 0.31 0.31 0.30 0.28
h?=0.30 0.59 0.44 0.42 0.41 0.41 0.40
h? = 0.80 0.68 0.42 0.41 0.38 0.37 0.36

Table 8. Accuracies of breeding value for thresholtraits using by classical method

Scenario A B C D
h? = 0.05 0.15 0.23 0.29 0.35
h*=0.30 0.22 0.30 0.37 0.44
h? = 0.80 0.36 0.43 0.46 0.55
Discussion

The estimation model assumes that there is no dom(i.e., only the additive effects are fitteat)d the average
effects of the genes are estimated, which is pigtsatiisfactory for the prediction of breeding wedun most cases.
It is important to notice that in this study, thepplation is random mating. Muir [18] reported tHecay of

accuracies were faster in situations with direcl@election compared with random mating due tawgha in allele

frequency, genetic variance and LD in each germrati

The accuracies of selection are given in tables 8.1n all scenarios we used classic TBV, lower accyraas
observed comparing with similar conditions at gemoipath. In a similar research for traditional scheme in
Canadian Holsteins, the accuracy of predictingBB¥ of progeny-tested young bulls was estimatedgd®.75 for
their first EBV [10].

A relationship between heritability and accuraciess observed, as heritability decreased so didatuairacy.
Meuwissen et al. [16] showed that the accuracy BBW&s decreased to 0.804, 0.768, 0.758, 0.734 artBdn 5
subsequent generations, respectively. This phenanves also reported by Kolbehdari et al. [9].

In other research was done by Wang et al. [4] atioeshold traitsthe accuracies declined over generations for all
methods with almost the same rate and by decreé#sénigeritability from 0.50 to 0.05, the accuraalesreased.
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Some studies suggestiédcan be compensated by using a larger numbebséreations like Calus & Veerkamp
[12].

On the other hand, Habier et al. [8] indicated tiisihg genomic relationship among individuals am hetween
markers and QTL result in higher accuracy becausénduding genomic relationship information among
individuals. In an earlier study, Nejati- Javarezhial. [1] documented the impact of replacing pezigoy marker
on higher accuracy of evaluation.

GS can be useful for traits with low heritability bsing more balanced selection scheme and apptepriodels.
With traditional selection schemes, low heritalbbéts are only improved slowly because reliabitifythe breeding
value depends strongly on the heritability. With B8 reliability depends on many factors like sifelataset used
to make the marker associations, recombinationsah® marker density which is similar for both lowdahigh
heritability traits.

Therefore, use of GS may lead to a more balandedt&m index than obtained in the traditional séten schemes
for two reasons. First, GS models seem to perfosth for low heritable traits, where the reliabii§ could be as
high as or higher than obtained in a traditiondcén scheme [10]. Second, important low heriatoaits like

disease traits are often not included in the brepdbjective because getting accurate records esetlraits is
difficult. With GS the having phenotypes on closkatives of breeding candidates is not necessarmheaprediction
ability persists over several generations. Thisgithe opportunity to perform difficult recordings designated
herds, which are then used to construct predictiodels for the entire population.

Advantages of Bayesian method to BLUP evaluatios been shown in some studies [2, 16]. For example,
Meuwissen et al. [16] used Bayesian method andradmaaccuracy of 0.848 for the GEBVs of individuadsthe
training set.

Because of the only gradual decay in the accurdsglection over time, it can be concluded thatv@iEbe well
applicable to dairy breeding setting without progeesting. Therefore, costs of breeding may be cedwand in
addition, genetic gain per year is accelerateceldycing the generation interval.

Implementation of GS for dairy breeding requireghhieliabilities for GEBV for at least two to thrgenerations
ahead without having phenotypes. GS is therefossipte and a very interesting approach to replacsipplement
progeny testing.

On the other hand, we observed a tendency forateeaf decay to be higher for the first two to ¢hgenerations,
which is the critical time frame for the use of geric predictions in dairy cattle. It could be irgsting to
understand the causes of this decay and to setiive improvements in the genomic prediction niedeuld be
made to keep reliabilities high over a longer tspan.

In genomic selection, effects of QTL are distritltenong adjacent marker loci. In other words, sdegrees of
co-linearity exist among neighboring markers. Witkireasing distance between generations in traisetgand
generation of validation set, because of higherwt®oof recombination occurrence the accuracy eluation
decreases.

Muir [18] suggested that after several generatiollewing estimation of marker effect, the accuraegduces and
these effects should be re estimated. Similar te$isve been reported elsewhere [11, 17]. The basthe high
reduction and possible improvements should be tigeted more thoroughly.

In practical situations, this means that it is adggeous to use genomic method because this atrmdsaditional
estimation of TBV with the associated problems sahinavailable or incomplete recording data.

However, if cost of genotyping is an issue it mayrbcommended to use genotypes and phenotypigrafam of
individuals. GS has revolutionized dairy cattle breeding byatiyeincreasing the accuracies of estimates of tiene
merit for young animals and could double the rdtgemetic progress by shortening the generaticeryvat. GS so
far has focused on continuous traits, although,yntlareshold traits significantly affect profitajliand are difficult
to be selected.
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Therefore, GS for threshold traits is importanaimmal breeding. Among many existing approache&$timating
genomic breeding values of quantitative traits,ttiree normal Bayesian methods (BayesA, BayesBBaygsCp)
are commonly used. But they are not suitable fogghold traits, because they are based on linedelsio

CONCLUSION

Genomic selection can be used for threshold tiiés continuous traits in practical animal breedingcause of
having many advantages compare with traditionahoug, although, statistical methods and analyzeetsahould
be investigated more.
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