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ABSTRACT 
 
The mass spectrum of the D wave mesons has been investigated and compared in the frame work of non-relativistic 
(NRQM) and relativistic (RHM) quark models. The NRQM Hamiltonian used in the investigation has kinetic energy, 
confinement potential, one-gluon-exchange potential (OGEP) and instanton induced quark-antiquark interaction 
(III) whereas RHM Hamiltonian includes the Lorentz scalar plus a vector harmonic-oscillator potential, the 
confined-one-gluon-exchange potential (COGEP) and III. The calculated D wave meson masses are in agreement 
with the experimental D wave meson masses. The respective role of III, OGEP and COGEP in the D wave meson 
spectrum is discussed and compared between two models.  
 
Keywords. Quark Model; Confined One-Gluon-Exchange Potential; Instanton Induced Interaction; D Wave Meson 
Spectra.                    
______________________________________________________________________________ 
 

INTRODUCTION 
 

The hadron spectroscopy has received tremendous importance both experiementally and theoreticall since there  is a 
wast  experimental data in hadron spectroscopy that would constitute a good testing ground for non perturbative 
Quantum Chromodynamics (QCD). Within the standard model, hadron is a composite system of quarks and gluons.  
Since QCD is not exactly solvable in the non-perturbative regime, one has to resort to models which incorporate the 
basic features of the QCD. As a consequence, our understanding of hadrons continues to rely on insights obtained 
from the experiments and QCD motivated models in addition to lattice QCD results. The phenomenological models 
developed to explain observed properties of hadrons are either non-relativistic quark models (NRQM) with suitably 
chosen potential or relativistic quark models (RQM) [1-9] where the interaction is treated perturbatively. There are 
successful NRQM and RQM to explain the meson spectra. The NRQM usually contain three main ingredients: the 
kinetic energy, confinement potential and a hyperfine interaction term which has often been taken as an effective 
one-gluon-exchange potential (OGEP) [10]. On the other hand, the relativistic models have a confinement potential 
which is usually taken to be Lorentz scalar plus vector potential. There are models both non-relativistic and 
relativistic employed to explain meson spectra with OGEP.  Other type of interactions have been introduced in the 
literature from the non-relativistic reduction of the t’Hooft interaction [11-14], termed as instanton  induced 
interaction (III) which has been successfully applied in several studies of the hadron spectra [6,12-13]. The main 
achievement of the III in hadron spectroscopy is the resolution of the UA (1) problem, which leads to a good 
description of the masses of η and η′  mesons. In literature there are models which have tried to explain hadron 

spectroscopy only with OGEP [1-4] and some models only with III [6], ignoring completely the OGEP.  It may be 
an exaggeration to eliminate OGEP completely for light quarks. The OGEP has to be present but with a smaller 
strength consistent with the asymptotic freedom, since the III vanishes  for heavy quarks.  
 
In the present work an attempt has been made to obtain the masses of D wave mesons in the frame work of NRQM 
and RQM. The basic aim is to obtain the D wave mesons with minimum number of parameters and to investigate the 
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relativistic effects on the mass spectrum. The existence of a gluon self-coupling in QCD states suggest that, in 
addition to the conventional qq states, there may be non- qq mesons including gluons and qq g hybrids and 

multiquark states [15]. Since the theoretical guidance on the properties of unusual states is often contradictory, 
models that agree in the qq sector differ in their predictions about new states. In our work we have investigated the 

meson nonets which have the   qq  quark model assignments, according to the most recent review of Particle 

Physics [15]. 
 
Hence, to study the D wave light meson spectra we have developed two models: the non-relativistic (M1) and 
relativistic (M2) models. The non-relativistic model has kinetic energy, confinement potential, OGEP and III. In the 
relativistic model (M2), we have made use of the successful relativistic harmonic model (RHM) [16-20] in which 
the confinement potential is a Lorentz scalar plus vector potential. Both scalar and vector potential are harmonic 
oscillator potentials.  In M2, the effect of confinement of gluons also has been taken into account. In the existing 
models though the effect of confinement of quarks has been taken into account the effect of confinement of gluons 
has not been taken into account. In M2, a consistent scheme has been employed for the confinement of gluons. For 
the confinement of gluons, we have made use of the current confinement model (CCM) [19-20]. The confined gluon 
propagators (CGP) derived in CCM has been used to obtain the confined one gluon exchange potential (COGEP). In 
M2, the total Hamiltonian has Lorentz scalar plus vector potential along with COGEP (instead of OGEP in M1). The 
M1 and M2 models along with III have been successful in obtaining the mass spectra of S and P wave light mesons 
[21-24].  The full discussion of the Hamiltonian of M1 and M2 are given in section 2. The results of the calculation 
are presented in section 3 and the conclusions are given in section 4.  
 
2. The constituent quark Models M1 and M2 
2.1  Non-relativistic quark model (M1) 
In NRQM the full Hamiltonian is, 

                                    ( ) ( ) ( )ij ij ijOGEP CONF IIIH = K +V r +V r +V r
r r r

                                             (1) 

where  
 

                                      
22

1 2
i

i CM
i i

P
K M K

M=

 
= + − 

 
∑                                                                (2)  

here iM  and iP  are the mass and momentum of the ith quark.  The K  is the sum of the kinetic energies including 

the rest mass minus the kinetic energy of the centre of mass motion (CM) of the total system.  The potential energy 
part consists of confinement termCONFV , the residual interaction OGEPV  and the instanton induced 

interaction IIIV .   

 
The confinement term represents the non-perturbative effect of QCD that confines quarks within the colour singlet 
system, and is taken to be linear. 
 

                                           ( )( ) r .ijCONF c ij i jV r a= − λ λ

r
                                                              (3) 

 

where ca  is the confinement strength and   rij here and elsewhere in the paper stands for the relative distance 

between the two quarks. The iλ  and jλ  are the generators of the color SU(3) group for the 
thi and thj  quark.  

The following central part of two-body potential due to OGEP is usually employed [10], 
 

                       
1 2

( )  . - 1 . ( )
4 3

cent s
ij ijOGEP i j i j

ij i j

V r r
r M M

α π δ
  = +  

   
λ λ σ σ

r r
                                   (4)      

  
where the first term represents the residual Coulomb energy and the second term the chromo-magnetic interaction 

leading to the hyperfine splitting. The iσ  is the Pauli spin operator and sα  the quark-gluon coupling constant. 

 

The non-central part of OGEP has the spin-orbit interaction ( )SO
ijOGEPV r
r

 and the tensor term ( )TEN
ijOGEPV r
r

. The spin-

orbit interaction of OGEP is,  
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        ( ) ( )3

3 1
( ) .  

4 8
SO s

ij ij ijOGEP i j i j
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V r r P
M M r

α  
= − × ⋅ + 

  
λ λ σ σ

r r ur
                                               (5) 

 

where the relative angular momentum is defined as usual in terms of relative position ijr
r

and the relative 

momentum ijP
ur

.   There are several versions of the tensor term in literature. We have used the expression derived in 

[10] from the QCD lagrangian in the non-relativistic limit and used subsequently by many authors [25] 
 

3

1 1 ˆ( ) .
4 4

TEN s
ijOGEP i j ij

i j ij

V r S
M M r

α  
= −  

  
λ λ

r
                                                        (6) 

where,          

                             ˆ ˆ[3( . )( . ) . ]i j i jijS r rσ σ σ σ= −
ur ur ur ur

. 

 

The tensor potential is a scalar which is obtained by contracting two second rank tensors. Here, ˆ ˆ ˆi jr r r= −  is the 

unit vector in the direction of  r
r

 . In the presence of the tensor interaction, L
ur

 is no longer a good quantum number. 
The central part of III potential is given by [7, 12-13],  
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                                        (7)                                                                            

The symbols S, L and I are respectively the spin, the relative angular momentum and the iso-spin of the system. The 
g  and g ′  are the coupling constants of the interaction. The Dirac delta-function appearing has been regularized and 

replaced by a Gaussian- like function:  
 

                                           
2

23

1
exp

( )

ij
ij

r
δ

π
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ΛΛ   

                                                                  (8) 

 
where Λ is the size parameter. 
The non-central part of III has contributions from both spin- orbit and tensor terms. The spin-orbit contribution 
comes from relativistic corrections to the central potential of III. It is given by [13],  
 

( )  ( )   ( )SO
ij ij ijIII LS LV r V r L S V r L∆= ⋅ + ⋅∆
r r ur ur r ur ur

                                                       (9) 

 

The first term in Eqn. (9) is the traditional symmetric spin-orbit term proportional to the operatorL S⋅
ur ur

. The other 

term is the anti-symmetric spin-orbit term proportional to L ⋅∆
ur ur

 where ( )1 2
1

2
σ σ∆ = −

ur ur ur
. The radial functions of 

Eqn. (9)  [12],  
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The term ( )LSV r
r

 is responsible for the splitting of the 3
JL  states with 1,  L, L+1. J L= −  With such a 

termL is still good quantum numbers but S is not.  The term LV ∆ ( r
r

)  couples states 1
J LL =  and 3 J LL = .  Due to the 

mass dependence in Eqn. (11), it is clear that this term is inoperative when the quarks are identical.  In practice the 
antisymmetric spin orbit term is important only in the K-sector.  The κi and ηi  are free parameters in the theory 
[12,23,24].  The Mi corresponds to the mass of the strange quark (s) and Mj corresponds to mass of (u/d) quark. This 
term accounts for the splitting between  11D2 and 13D2 states in the K sector.  
 
The tensor interaction of III is [13],  
 

2 28
ij -4

ij
3

=7 -4

ˆ exp(- r )
( )

( π )
ij kTEN

III k
ki j k

S
V r

M M

η
κ

η
= ∑

r
                                                          (12) 

 

With the tensor interaction, L is no longer a good quantum number since this term couples the states 3
1J LL = +  and 

3
1( 2)J LL = ++ . It is to be noted that III and OGEP have the same spin dependence except for LV ∆ ( r

r
) term.  The 

equations (9)-(12) have been used by a number of authors and are obtained from the non-relativistic reduction of the  
‘t Hooft interaction[11-14]. 
 
2.2 The  relativistic harmonic model (M2) 
In RHM [16-20], quarks in a hadron are confined through the action of a Lorentz scalar plus a vector harmonic-
oscillator potential                       

                                       ( ) 2 2
0

1
( ) 1

2confV r A r Mγ= + +                                                          (13)                                           

where 0γ  is the Dirac matrix: 

                                  0
1 0
0 1

γ  =  − 
,                                                                                    (14) 

 
 M is the quark mass and A2 is the confinement strength. They have a different value for each quark flavour. In 
RHM, the confined single quark wave function (ψ ) is given by: 

            N

E M

φ
ψ

φ

 
 = ⋅ 
 + 

σ P                                                                                                      (15)           

 
 
with the normalization 

          

2/1

3

)(2









+
+=

ME

ME
N                                                                              (16)  

                                                                                                                                 
where E is an eigenvalue of the single particle Dirac equation with the interaction potential given in (13). The lower 
component is eliminated by performing the similarity transformation, 
 
                 Uψ φ=                                                                                                           (17)                                                                                                                            

 
Where U is given by, 

2

2

1

1
( )

E M

N
E ME M
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 +
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σ P
1

σ PP 1
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Here, U is a momentum and state (E) dependent transformation operator. With this transformation, the upper 
component φ  satisfies the harmonic oscillator wave equation. 
 

2
2 2 ( )A r E M

E M
φ φ 

+ = − + 

P
,                                                                     (19)                             

 

which is like the three dimensional harmonic oscillator equation with an energy-dependent parameter2
nΩ : 

                                       ( )1 2

n nA E MΩ = +                                                                           (20)                                                      

 
The eigenvalue of (19) is given by, 
 

                                                     2 2 2(2 1)n nE M n= + + Ω .                                                      (21)            

                      
Note that eqn.(19) can also be derived by eliminating the lower component of the wave function using the Foldy-
Wouthuysen transformation as it has been done in [17-18]. 
 
Adding the individual contributions of the quarks we obtain the total mass of the hadron. The spurious centre of 

mass (CM) is corrected [25] by using intrinsic operators for the 
2

ii
r∑  and 2

ii
∇∑  terms appearing in the 

Hamiltonian. This amounts to just subtracting the CM motion zero point contribution from the 2E  expression. It 
should be noted that this method is exact for the 0S-state quarks as the CM motion is also in the 0S state.  
 
 The COGEP is obtained from the scattering amplitude [17-19] 
 

2

( )
4 2 2

ba
jabs i

fi i i j j

g
M D qµ ν

µν

λλψ γ ψ ψ γ ψ
π

= ,                           (23)                           

                

where, 0ψ ψ γ+= , /i jψ are the wave functions of the quarks in the RHM, ab
abD Dµυ µυ= ∂  are the CCM gluon 

propagators in momentum representation, 2 4sg π (= sα ) is the quark-gluon coupling constant and iλ  is the color 

(3)cSU generator of the thi quark. The details can be found in references [17-19]. Below we give the expressions 

for the central part of the COGEP. 
 
The central part of COGEP is [19], 
 

4
3 4 2

0 12
( )   ( ) 4 ( ) ( ) 1 2 3

4 ( )
s

i j

cent
ij ij ij ijCOGEP i j

N
D c r D

E M
V r r r r

α
π1

= + δ − − ⋅
+

 
 ⋅      

σ σλ λ

r r r r
               (24)         

 To calculate the matrix elements (ME) of COGEP, we have fitted the exact expressions of 0( )D r
r

 and 1( )D r
r

by 

Gaussian functions. It is to be noted that the 0( )D r
r

 and 1( )D r
r

 are different from the usual Coulombic propagators. 

However, in the asymptotic limit ( 0r →
r

) they are similar to Columbic propagators and in the infra-red limit ( )r → ∞
r

 

they fall like Gaussian. In the above expression the c (fm-1) gives the range of propagation of gluons.  The D0(r) and 
D1(r) are given by, 
 

0( )D r
r

= 
r

1
2

α + α 
 

exp [
2 2

0

2

r c−
];     1( )D r

r
= 

r

γ
 exp [

2 2
2

2

r c−
] 

 

Where 1α  = 1.035994, 2α  = 2.016150 fm-1, 0c  = (3.001453)1/2 fm-1,γ  = 0.8639336 and 2c = (4.367436)1/2 fm-1. It 

should be noted that in the limit c → 0, the central part of the COGEP goes over to the corresponding potential   
OGEP of the NRQM [19]. 
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Tensor part of COGEP is [19],   

( ) TEN
ijCOGEPV r
r

=-
4

sα
i j⋅λ λ

2( )E M

4Ν
+

1 1( ) ( )

3 3
ij ijD r D r
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″ ′ 
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r r

ijŜ                                        (25) 

 

Where  ij
ˆ ˆ ˆS [3( . )( . ) . ]ij i j i jr r= −σ σ σ σ   

 

Where ˆ ˆ ˆ
i j= −r r r  is the unit vector in the direction of r

r
.  In the above expression primes and double primes 

correspond to first and second derivatives of 1( )D r
r

. The derivatives of 1( )D r
r

 were fitted   to Gaussian functions.    
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2 2
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2 2
2
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''
1 ( )ijD r
r

= 
2 22 2

32
3 2

2 2
exp[ ] exp[

2 2
]

r cr c

r r
γ −− − ε  + 

2 2
2 41
exp[ ]

2

r c
r

r
κ −  

 
 

ε  = -1.176029 fm-1, κ =5.118019 fm-4 , 3c = (2.117112)1/2 fm-1 ,c4= (3.255009)1/2 fm-1 

The spin-orbit part of COGEP is [19],  
 

( )LS
ijCOGEPV r
r
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4
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= 2 (
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ε exp [

2 2
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2
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γ exp [

2 2
2

2

r c−
])    

 

Where 1β =2.680358 fm-1, 2β =-7.598860 fm-2 and 1c = (2.373588)1/2 fm-1 

 
It should be noted that in the limit c → 0, the central, tensor and spin-orbit part of the COGEP goes over to the 
corresponding potentials of the OGEP [19]. 
 
3.   Results of D wave Meson Spectra in M1 and M2 
In our investigation, we have expressed the product of quark-antiquark oscillator wave functions in terms of 
oscillator wave functions corresponding to the relative and centre-of-mass coordinates (CM). The normalised 
relative radial wave function for 0D state is, 
 

          ( )

2

2 2

0 7 1

2 4

exp
4 2

15

ij

ij
ijD

r

b r
r

b
ψ

π

 −
 
 =  

 
 
where b is the oscillator size parameter. There are seven parameters associated with the central parts of the potential. 
The masses of up (Mu), down (Md), strange (Ms) quarks which are taken as free parameters in both M1 and M2. The 
other parameters are confinement strength ac, the oscillator size parameter b and the strong coupling constant αs. The 
value of b is fixed by minimizing the expectation value of the Hamiltonian for the pseudo scalar mesons. The 
confinement strength ac is fixed by the stability for variation of mass of the mesons against the size parameter b. The 
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αs is fixed by the π-ρ mass splitting. The mass difference arises from the colour magnetic term of OGEP/COGEP. 
In M2, A2 is the confinement strength parameter and Ω (=1/b) is  the oscillation parameter  are fixed in the same 
way as in M1. In M2 there is an additional parameter c, termed CCM parameter which was fitted to iota (1440 

MeV),J
pc

= 0-+ (the oldest glue ball candidate) as a digluon glue ball [19]. The values of the parameters used in our 
calculation in M1 and M2 are listed in table 1. The strength parameters of III, namely, g, g′  and the scale parameter 

Λ were  fixed to obtain S wave meson spectra. In the current work, these parameters values are fixed at the values 
chosen in [23-24] and are given in table 1. Among the non-central parts of the potentials, the hyperfine terms of III 
has 12 additional strength (κ) and size (η) parameters.  These have been fixed as explained in our previous works 
[23-24]. We were able to reproduce the light P-wave meson masses with all η’s and κ’s held fixed and by only 
varying the κ7 and κ8 parameters. The values of κ7 and κ8 parameters used in our model are listed in tables 2.  The 
oscillator quantum number for the CM wave functions is restricted to Ncm= 0. The Hilbert space of relative wave 
functions is truncated at radial quantum number nmax = 4. The Hamiltonian matrix is constructed for each meson 

separately in the basis states of 2 10, 0; S
CM CM JN L L+= =  and diagonalised.  

 
We have investigated two singlet light D wave mesons and six triplet light D wave mesons namely 2π (1670) 

(11D2) , K2(1770) (11D2), ω(1650) (13D1), K*(1680) (13D1), K2(1820) (13D2), 3ω (1670) (13D3), K*(1780) (13D3), 
3φ (1850) (13D3) [15] in the frame work of M1 and M2.  Table 4, gives the diagonal contributions to the masses of 

D wave mesons by linear confinement, kinetic energy, colour-electric (CE), colour-magnetic (CM), spin-orbit, 
tensor terms of OGEP and  spin-orbit, tensor terms of III (  in MeV ) in M1. Table 5, gives the diagonal contributions 
to the masses of mesons by Vconf, color-electric (CE), color-magnetic (CM), spin-orbit, tensor terms of COGEP and 
spin-orbit, tensor terms of III ( in MeV ) in M2. The dominant contribution to the masses comes from the kinetic 
energy and linear confinement potential in M1 and from the Lorentz scalar plus a vector harmonic-oscillator 
potential in M2 
 

Table 1. Values of parameters  used in M1 and M2. 
  

b  0.62 fm 
Mu,d  380 MeV 
Ms  560 MeV 
ac  10 MeV fm-1 

sα   0.2 

1η   0.2 fm 

2η   0.29 fm 

3η   1.4 fm 

4η   1.3 fm 

1κ   1.8 

2κ   1.7 

3κ   1.9 

4κ   2.1 

5κ  -22.0 

6κ  -24.5 

 
            

Table 2. Values of 7κ  and 8κ  
parameters in M1 and M2. 

 
Meson 

7κ  8κ  

(1650)ω    28.0   39.0 

K*(1680)   40.0   50.0 
K2(1820)   37.0   45.5 

3ω (1670) -5.0 -8.0 

K*(1780)   1.5   2.0 

3φ (1850)   10.0   13.0 
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Table  3.  Masses of  D wave mesons ( MeV ) 
 

N2S+1LJ Meson Experimental  Mass Calculated Mass in  
M1 

Calculated Mass  in  
M2 

11D2 
2π (1670) 1670±20 1696.6 1673.8 

K2 (1770) 1773±8 1727.4 1768.8 
13D1 (1650)ω  1649 ± 24  1672.2 1622.9 

K*(1680) 1717 ± 27  1707.4 1734.9 
13D2 K2(1820) 1816 ±13  1812.0 1824.0 
 
13D3 

3ω (1670) 1667 ± 4  1719.2 1653.9 

K*(1780) 1776 ± 7  1776.7 1787.5 

3φ (1850) 1854 ± 7  1816.9 1899.7 

 
The important role played by III in obtaining the masses of D mesons can be understood by examining table 7. In 
table 7, we have listed the calculated masses of triplet D wave mesons in M1  and M2 without the inclusion of III 
potential. The role of III is crucial in explaining the mass differences of D wave K mesons in both the models. It is 
interesting to note that the calculated masses without III contribution of triplet D wave mesons involving only u/d 
quarks are higher than the experimental masses. By comparing these values in both the models we conclude that the 
calculated masses of D wave mesons involving only u/d quarks are higher in case of M1. The inclusion of III lowers 
the masses of D mesons in u/d sector. In case of other triplet D wave mesons III has attractive contribution and the 
calculated masses are higher in M2 when compared with the values of M1. Table 6 gives the comparison between 
the diagonal OGEP and COGEP contributions to the masses of triplet mesons. In both the models the contribution is 
attractive. The contribution due to COGEP in M2 is less compared to that of OGEP in M1. In table 3 we have listed 
the calculated masses of D wave mesons in M1 and M2 which are in good agreement with the experimental masses  
It has been reported in literature [8] that there is a common mass degeneracy of  13D1 and 13D3 states. But our results 
in both M1 and M2,  for  13D1 and 13D3 states do not exhibit this degeneracy as the strength of tensor and spin-orbit 
interactions are different  (table 4 and 5).  
 

Table 4. The diagonal contributions to the masses of mesons by kinetic energy, color-electric (CE), color-magnetic (CM), spin-orbit, 
tensor terms of OGEP and   spin-orbit, tensor terms of III (  MeV ) in M1. 

 
Meson Vconf    Vkin CE

OGEPV  
CM
OGEPV  

LS
OGEPV  

TEN
OGEPV

 

LS
IIIV  

TEN
IIIV  

2π (1670) 59.699   1693.11   -47.96 -6.24   ... ... ... ... 

K2 (1770) 59.699   1723.14 -48.96 -4.23    ... ... ... ... 

(1650)ω  59.699   1693.11   -47.96     2.08  -40.32   -8.96   -41.83  -269.83 

K*(1680) 59.699    1723.14 -48.96   1.41    -27.36   -6.08 -29.74  -245.11 
K2(1820) 59.699    1723.14 -48.96 1.41   -9.12     6.08 -9.91  224.56 

3ω (1670) 59.699    1693.11 -47.96 2.08   26.88 -2.56 27.89  15.02 

K*(1780)
 

59.699    1723.14 -48.96   1.41 18.24 -1.74 19.83  -2.73 

3φ (1850)
 

59.699    1753.18 -49.64     0.96 12.38 -1.18 12.84  -12.16 

 
Table 5. The diagonal contributions to the masses of mesons by Vconf, color-electric (CE), color-magnetic (CM), spin-orbit, tensor terms 

of COGEP and spin-orbit, tensor terms of III (  MeV ) in M2. 
 

Meson    Vconf CE
COGEPV

 

CM
COGEPV

 

LS
COGEPV  

TEN
COGEPV

 

LS
IIIV  

TEN
IIIV  

2π (1670) 1675.26 -2.83  1.43     ... ... ... ... 

K2 (1770) 1770.79 -3.13    1.22   ... ... ... ... 

(1650)ω  1675.26 -2.83   -0.48 2.12  0.44 -41.83  -269.83 

K*(1680) 1770.79 -3.13 -0.41 1.81 -0.38 -29.74  -245.11 
K2(1820) 1770.79 -3.13 -0.41  0.60   0.38 -9.91  224.56 

3ω (1670) 1675.26 -2.83  -0.48 -1.41 -0.13 27.89  15.02 

K*(1780)
 

1770.79  -3.13  -0.41 -1.21 -0.11 19.83  -2.73 

3φ (1850)
 

1866.32  -3.42    -0.35 -1.05 -0.09 12.84     -12.16 
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Table 6. Comparison between the diagonal OGEP and COGEP contributions to the masses of triplet mesons ( MeV ). 
 

Meson VOGEP VCOGEP 

2π (1670) -54.20 -1.40 

K2 (1770) -53.19 -1.91 

(1650)ω  -95.16 -0.75 

K*(1680) -80.99 -2.11 
K2(1820) -50.59 -2.56 

3ω (1670) -21.56 -4.85 

K*(1780)
 

-31.05 -4.86 

3φ (1850)
 

-37.48 -4.91 

 
Table 7. Comparison of masses of triplet D mesons in M1 and M2 ( MeV ) without III 

 
Meson Experimental Mass Calculated Mass 

    in NRQM 
Calculated Mass  
   in RHM 

(1650)ω  1649 ± 24
 

1679.9
 

1676.3 

K*(1680) 1717 ± 27 1716.1 1770.9 
K2(1820)  1816 ±13 1730.1 1768.2 

3ω (1670) 1667 ± 4
 

1737.4
 

1670.4 

K*(1780) 1776 ± 7 1755.9 1765.9 

3φ (1850) 1854 ± 7
 

1777.7
 

1861.4 

 
CONCLUSION 

 
We have investigated the effect of the III on the masses of the D wave mesons in the frame work of NRQM and 
RHM. We have shown that the computation of the masses using only OGEP and COGEP is inadequate in case of 
NRQM and RHM respectively. The contribution of the III is found to be significant in both the models. To obtain 
the masses of D wave mesons, 5x5 Hamiltonian matrix was diagonalised. The contribution from the tensor and spin-
orbit part of the III is found to be significant in case of triplet D wave mesons. To obtain the physical masses of the 
mesons in the K sector it is necessary to include the anti-symmetric part of III. There is a good agreement between 
the calculated and experimental masses of D wave mesons in both M1 and M2.  
 
From our work, we cannot conclude that one of the models considered here is preferable, but it is generally 
recognized that models with relativistic dynamics are more rigorous from the theoretical point of view.  Also, the 
models should include the confinement of gluons. Hence, M2 seems to be a better approach to investigate the light 
meson spectra. Our hope is that the good equivalence found between relativistic and non-relativistic spectra for two-
quark systems persists for multi quark systems. 
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