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ABSTRACT 
 
In this approach (The linear parametric approximation), the nonlinear functions is approximated by a piecewise 
linear functions. The obtained solution has desirable accuracy and the error is completely controllable. With 
extension this approach, we propose a new two-step iterative method for solving nonlinear fuzzy equations and 
nonlinear non-smooth fuzzy equations. Finally some numerical examples are given to show the efficiency of the 
proposed approach to solve same equations in the other references.   
 
Key words: Taylor linear expansion, Linear Parametric Approximation, nonlinear non-smooth fuzzy function. 
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INTRODUCTION 
 

In recent years much attention has been given to develop iterative type methods for solving nonlinear equations like 
F(x) = 0. Because the Systems of simultaneous nonlinear equation play a major role in various areas such as 
mathematics, statistics, engineering and social sciences. The concept of fuzzy numbers and arithmetic operation with 
these numbers were first introduced and investigated by [5,8,13–15,17]. One of the major applications of fuzzy 
number arithmetic is nonlinear equations whose parameters are all or partially represented by fuzzy numbers [1, 6, 
10]. Standard analytical techniques presented by Buckley and Qu in [2 − 5]. Standard analytical techniques like 
Buckley and Qu method [1–4], cannot be suitable for solving the equations such as: 
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Where fedcbax ,,,,,, and g  are fuzzy numbers. Moreover famous of classical numerical methods such as: 

Newton and Newton-Raphson are unable to solve the non-smooth equations such as: )(iii  equation.We therefore 

need to develop the numerical methods to find the roots of such equations. Here, we consider these equations, in 
general, as: .0)( =xF  
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In this paper we introduce a new approach to solve approximately nonlinear non-smooth fuzzy equations which 
don’t have any limitation upon convexity and smoothness of the nonlinear fuzzy functions. In this approach any 
given nonlinear fuzzy function is approximated by a piecewise linear function with controlled error which is based 
on generalization of Taylor linear expansion of smooth function. Also we represent an efficient algorithm to solve of 
approximated fuzzy problem. One of the main advantages of our approach is that it can be extended to problems 
with nonlinear non-smooth fuzzy functions by introducing a novel definition of Global Weak Differentiation in the 
sense of L1-norm [19]. The paper is organized as follow: 
 
In  Section  two,  we  recall  some  fundamental  results  of  fuzzy  numbers. In section three we explain the 
approach of linear parametric approximation for nonlinear equations. We verify in the fourth section the approach 
extended for non-smooth nonlinear equations by introducing the definition of global weak differentiation. We 
extended the approach in section five for solving fuzzy nonlinear equations.  In the sixth sections, the approach was 
extended   for solving of non-smooth nonlinear fuzzy equations. Finally some illustrative examples and conclusions 
are given to show the effectiveness of the proposed approach. 
 
2. Preliminaries 
Definition 2.1. A fuzzy number is a fuzzy set like u ]1,0[: =→ℜ I which satisfies [9,16,18], 

1. u  is upper semi continuous, 

2. 0)( =xu outside some interval[ ]dc, , 

3. There are real numbers ba, such that dbac ≤≤≤ and 

3.1  )(xu   is monotonic increasing on [ ]ac,   ,  

3.2  )(xu  is monotonic decreasing on [ ]db, , 
3.3  .,1)( bxaxu ≤≤=  

The set of all these fuzzy numbers is denoted by E. An equivalent parametric is also given in [20] as follows.  
 

Definition 2.2. A fuzzy number u  in parametric form is a pair ),( uu of function 

)(ru , )(ru , 10 ≤≤ r , which satisfies the following requirements: 

1. )(ru  is a bounded monotonic increasing left continuous function, 

2. )(ru  is a bounded monotonic decreasing left continuous function, 

3. )()( ruru ≤ , 10 ≤≤ r . 

A popular fuzzy number is the trapezoidal fuzzy number ),,,( 00 βσyxu = with interval  defuzzifier [ ]00, yx and 

left fuzziness σ  and right fuzziness β  where the membership function is: 
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Its parametric form is: 
 

.)(    ,)( 00 ryrurxru ββσσ −+=+−=  
 
Let )(ℜTF be the set of all trapezoidal fuzzy numbers. The addition and scalar multiplication of fuzzy numbers are 

defined by the extension principle and can be equivalently represented as follows. 
 

For arbitrary ),(),,( vvvuuu == and 0>k we define addition )( vu + and multiplication by scaler k  as: 
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3. The approach of linear parametric approximation for nonlinear equations [19] 
Consider the 0)( =xf  is a nonlinear smooth function. We may approximate the nonlinear function )(xf by a 

piecewise linear function defined on [a, b]. Let us mention the following definitions. 
 

Definition 3.1. Let ]),([ baPn be a partition of the interval ],[ ba as the form: 

 
},...,,{]),([ 10 bxxxabaP nn ===  

Where 
n

ab
h

−=   and ihxxi += 0 . The norm of partition defined by: 

{ }1
1

  max]),([ −≤≤
−= ii

ni
n xxbaP  

It is easy to show that 0]),([ →baPn as .∞→n  

 

Definition 3.2. The function ),( ii sxf  is defined as follows: 

nixxxsfssfxsfsxf iiiiiiii ,,1      ],[  );()()(),( 1 K=∈′−+′= −

∆

 
 

where ),( 1 iii xxs −∈ is an arbitrary point. The function ),( ii sxf is called the linear parametric approximation of  

)(xf  on ],[ 1 ii xx − at the point ),( 1 iii xxs −∈ . (In usual linear expansion the point is  is fixed, but here we assume

is is a free point in ],[ 1 ii xx − . 

 

Now, we define )(xgn  as the parametric linear approximation of )(xf on ],[ ba associated with the partition nP  as 

follows: 
 

∑
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−
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where Aχ  is the characteristic function and defined as below: 
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The following theorems are shown that )(xg n is convergence uniformly to the original nonlinear function )(xf

when 0]),([ →baPn . In the other word we show that: 

 

0]),([   as   ],[on   unformaly     →→ baPbafg nn  
 

The following theorems are shown that )(xg n is convergence uniformly to the original nonlinear function )(xf

when .0]),([ →baPn  in the other word we show that: 

 

0]),([  as  ],[on unformly    →→ baPbafg n  
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Lemma 3.1. Let ]),([ baPn be an arbitrary regular partition of ],[ ba . If )(xf  is continuous function on ],[ ba and

x , ],[ 1 ii xxs −∈  are an arbitrary points then: 

 
).(),(lim

0]),([
iii

baP

xfsxf
n

=
→

 

 
Proof. The proof is an immediate consequence of the definition. 
 
This lemma shown that fg n → point-wise on ].,[ ba  

 
Definition 3.3. A family F  of complex functions f defined on a set A  in a metric spaceX , is said to be 

equicontinuous on A  if for every 0>ε there exists δ > 0 such that whenever FfAyAxyxd ∈∈∈< ,,,),( δ . 

Here ),( yxd denotes the metric of A  (see [7]). 

 

Since )}({ xgn is a sequence ε<− )()( yfxf  of linear functions it is trivial that this sequence is equicontinuous. 

 

Theorem 3.1. Let }{ nf is an equicontinuous sequence of function on a compact set A  and }{ nf converges point-

wise on A . Then }{ nf  converges uniformly onA . 

 
Proof. See [19]. 
 

Theorem 3.2. Let )(xg n is a piecewise linear approximation of )(xf on ],[ ba as (1). Then: 

 

],[ y   baonunformalfg n → . 

 
Proof. The proof is an immediate consequence of Lemma 3.1 and Theorem 3.1 in [19]. 
 

Now, we introduce a novel definition of global error for approximated )(xf  with linear parametric function )(xg n  
in the sense of L1-norm which is a suitable criterion to show the goodness of fitting. 
 

Definition 3.4. Let )(xf be a nonlinear smooth function defined on ],[ ba and let )(xg n defined in (4) be a 

parametric linear approximation of )(xf .Let the global error for approximation of the function )(xf with function 

)(xg n in the sense of 1L -norm is defined as follows: 
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It is easy to show that nE  tends to zero uniformly when 0]),([ →baPn . This definition is used to make the fine 

partition which is matched with a desirable accuracy.  
 
4. Extension of linear parametric approximation for solving fuzzy nonlinear equations 

Now our aim is to obtain a solution for fuzzy nonlinear equation .0)(
~ =xF The parametric form of two step method 

is as follows:  

]1,0[   
,0),,(

,0),,(
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Therefore, by use the linear parametric approximation approach (generalization of Taylor linear expansion of 

smooth function) ofF , F , then ]1,0[∈∀r ,we define the function 0),,(
~ =rsxF ii  as follows:  

ni

xxxrsfsrsfxrsfrsxxF

xxxrsfsrsfxrsfrsxxF

iiiiiiii
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                                          (3) 

 

where ),( 1 iii xxs −∈ and ),( 1 iii xxs −∈  are an arbitrary point. The function ),,( rsxF iii is called the lower bound 

linear parametric approximation of  ),,(
~

rsxF ii  on ],[ 1 ii xx − at the point is and ),,( rsxF iii  is called the upper 

bound linear parametric approximation of  ),,(
~

rsxF ii  on ],[ 1 ii xx − at the point is .  

 

Now, we define ),,(
~

rsxG in  as the parametric linear approximation of ),,(
~

rsxF ii on ],[ ba associated with the 

partition nP  as follows: 
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where ],[],,[ 11 iiii xxAxxA −− == and Aχ  ,
A

χ   are the lower bound and upper bound characteristic functions 

respectively and defined as below: 
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The following theorems are shown that ),,(
~

rsxG in is convergence uniformly to the original nonlinear fuzzy 

equation ),,(
~

rsxF ii when 0]),([ →baPn . In the other word we show that: 

 
 

 

Lemma 4.1. Let ]),([ baPn be an arbitrary regular partition of ],[ ba . If ),,( rsxF ii and ),,( rsxF ii are continuous 

function on ],[ ba  and x  , x , ],[ 1 iii xxs −∈  , ],[ 1 iii xxs −∈ are an arbitrary points then: 
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Proof. The proof is an immediate consequence of the definition. This lemma shown that  
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Base on definition 2.4 and extension of it, ),,( rsxG in and ),,( rsxG in are sequence of linear fuzzy functions it is 

trivial that this sequence is equicontinuous. Moreover base on Theorem 3.1, ),,( rsxF ii and ),,( rsxF ii  

converges uniformly onA , A  in metric spacesX , X  respectively. 

 

Theorem 4.1. Let { nF }and { nF } are equicontinuous sequence of  function on a compact set s of A , A

respectively and { nF }, { nF } converges point-wise on A , A . Then { nF }, { nF } converges uniformly on A , A
respectively. 
 

Proof. Since { nF }, { nF } are sequences of equicontinuous fuzzy function onA , A  then: 
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For each AxAx ∈∈ , there exists 0>δ  such that U Ax
xNA

∈
⊆ ),( δ , U Ax

xNA
∈

⊆ ),( δ .Since  A , A  are 

compact, this open covering of A , A  have a finite sub-covering. Thus, there exists a finite number of points such 

as: rxxx ,,, 21 K in A  and rxxx ,,, 21 K  in A such that U
r

i ixNA
1

),(
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⊆ δ , U
r

i ixNA
1
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⊆ δ .Therefore for 

each Ax ∈ and Ax ∈  there exists     , AxAx ii ∈∈ respectively for ;,,2,1 ri K= such that: 
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We know nn FF ,  are point-wise convergent sequences then there exists a natural number N  such that for each 

NmNn ≥≥ , we have: 
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Then according to the Theorem 7.8 in [7] the sequence }{},{ nn FF  are uniformly continuous on AA,  and the 

proof is completed.  
 

Theorem 4.2. Let )(xG n and )(xGn  are piecewise linear approximations of  )(),( xFxF  respectively on ],[ ba
.as (4). Then: 
 

],[ y     baonunformal
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Proof. The proof is an immediate consequence of Lemma 3.1 and Theorem 3.1. 
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5 .Extension to nonlinear non-linear non-smooth fuzzy equations 
In general it is reasonable to assume that the objective function is a non-smoothness. Therefore we define a kind of 
generalized differentiation for non-smooth functions in the sense of L1-norm. This kind of differentiation is 
coinciding with usual differentiation for smooth functions. Therefore the following theorem is represented. 
 

Theorem 5.1. Consider the nonlinear non-smooth function RAf →:  where ∏ =
= n

i ii baA
1

],[ . 

Then the optimal solution of the following optimization problem is ).(xf ′  
 

n

b
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b

a
P

dxdxspsxsfxf
n

n
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(.)

1
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))().()(()(∫ ∫ −+−                                                                       (9) 

 

where Assss n ∈= ),,,( 21 K is an arbitrary point and (.)),(.),(.),((.) 21 nPPPP K=  is a vector. 

 
Proof. See [22]. 

Definition 5.1. Let RAf →: is a non-smooth function where ∏ =
= n

i ii baA
1

],[ . The global weak 

differentiation with respect to x in the sense of L1-norm is defined as the (.)P the optimal solution of the 

minimization problem which is shown in (9). 
 
Now based on Theorem 4.1 and definition 4.1,we proposed extension method for non-linear non-smooth fuzzy 
functions as following: 
 

Consider )(
~

xF is the nonlinear non-smooth fuzzy function. Based on Theorem 4.1we have non-smooth fuzzy 

problem as follows: 
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With use of two step method, non-smooth fuzzy problem convert as follows: 
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And in end, we use of AVK method [21] for solving above problems .With suppose [ ]1,5.0,0~∈x  , non-smooth 

fuzzy minimization problem (9) is formed as: 
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Remark: As we know, an approximate value of integral∫ −=
b

a
ckabk(x)dx )()( where c  is any point such as: 

.bca ≤≤  
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So, based two step method, AVK method, applying above remark, and assume c  is an ending point in any 

subinterval and is is middle point of ix~ , (11) is formed as: 
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Where : [ ]n
i

n
i

ix ,~ 1−∈ , n
i

ii xs 2
12~~ −=∈ and nii sx 2

1~~ −=− .As a whole, problems (13) is a NLP problem and we may 

obtain its solution by many packages such as Lingo,Matlab, Gino, etc. 
 
6. Numerical application 
Here we present examples to illustrating the linear parametric approximation method for find positive roots of 
nonlinear fuzzy equations and nonlinear non-smooth fuzzy equations. Examples 1 and 2 consider from Buckley, Qu 
[1] and S. Abbasbandy, B. Asady [20]. 
 
Example 6.1. Consider the fuzzy nonlinear equation  
 

)3,2,1()3,2,1()5,4,3( 2 =+ xx
 

 
Without any loss of generality, assume that x is positive and then the parametric form of this equation is as follows: 
 







=−−−+−

=+−+++

0)3()3()5(

0)1()1()3(
2

2

rxrxr

rxrxr
 

To obtain initial guess we use above system for 0=r , 1=r , therefore: 
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2)1(2)1(4
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2

2

2

2

xx
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xx

xx
; 

we obtain the solution for n=10 and with the Mean squared normalized error( MSE),7.1191e-007. For more details 

see Figs. 1. Now suppose x is negative, hence )0()0( xx > , therefore negative root does not exist. 

 
Example  6.2. Consider fuzzy nonlinear equation 
 

)13,8,5()5,4,3()4,3,2()3,2,1( 23 =++ xx  

 
Without any loss of generality, assume that x is positive and then parametric form of this equation is as follows: 
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Or equality: 
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23
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We apply proposed method, for n=10 and show result in Fig. 2 with MSE= 9.6773e-007. 
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Example 6.3. In this example we consider a nonlinear non-smooth fuzzy function as follows: 
 

)3,2,1()3,2,1()5,4,3( )(
~ 2 −+= xxxf

 
 

Since objective function is non-smooth fuzzy function. We find the global weak differentiation of  )(
~

xf which is 

the optimal solution of the following optimization problem .we solves this problem based two step method and AVK 

method for n=10 and with suppose [ ] 1 ,0∈x as follows: 
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Last equation is NLP problem and we obtain its solution by Matlab software .The optimal solution is shown in Fig. 
3. 

Finally we find fuzzy positive root of )(
~

xf  based proposed method (piecewise linear approximation) in Fig.4. 

 
Table 5.1 compares approximated and exact solution of last example. Comparison results show the effectiveness of 
the proposed approach in the presence of fuzzy nonlinear non-smooth functions 
 

Table 5.1-Numerical Results of Example for ]1,1[−∈x  
 

Nonlinear Non-
smooth fuzzy 

function 
 

Alfa 
cuts 

 

Mean 
squared 

normalized 
error 

Lower Bound Upper Bound 

Exact solution 
Approximated 

solution 
Exact solution 

Approximated 
solution 

�� �
��
=
�4	

�

�
 

+
�2	

|
�|
−
�2	

 

0.0 

2
.7

32
2

74
5

98
1

87
6

1e
-0

0
6 

 

0.434258545912285 0.435064547131094 0.530662386305967 0.530360293406754 
0.1 0.44412415703456 0.444375772558714 0.528341552126349 0.52818178820758 
0.2 0.452934422875685 0.452830255430553 0.525892369611471 0.52588855823833 
0.3 0.460857374128121 0.460540674603175 0.523303729749462 0.523473277978056 
0.4 0.468025837498525 0.468375721500721 0.520563182704725 0.520923045874304 
0.5 0.474546482933995 0.475107991360691 0.517656725750106 0.518227951922027 
0.6 0.480506146710884 0.481295985409024 0.514568548907043 0.515374090827102 
0.7 0.485976360919279 0.487001254955081 0.511280727930352 0.512348971391034 
0.8 0.49101666768945 0.492281879194631 0.507772851213202 0.509135126207242 
0.9 0.495677089411156 0.497181146025878 0.504021563046978 0.505714456061109 
1.0 0.500000000009872 0.501448707909162 0.500000000009872 0.501448707909162 
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   Fig.1. Positive solution of proposed method 

   
Fig.2. Positive solution and error of proposed method 
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 Fig3-Global Weak Differentiation of Nonlinear Non-Smooth Function )3,2,1()3,2,1()5,4,3( )(
~ 2 −+= xxxf  

 

Fig 4. Positive root of non-smooth fuzzy function  )(
~

xf Based Piecewise linear approximation  

 

CONCLUSION 
 

In this paper, we have suggested numerical solving method for non-linear fuzzy equations instead of standard 
analytical techniques which are not suitable everywhere. Also the approach can be extended for non-linear non-
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smooth fuzzy equations by a novel definition of global weak differentiation in the sense of L1 and LP norms. The 
main advantage of this approach is that we obtained an approximation for the optimum solution of the fuzzy 
problem with any desirable accuracy.  Initially we wrote nonlinear and non-smooth fuzzy equation in parametric 
form and then solve it by the linear parametric approximation method. Finally, examples were presented to illustrate 
proposed method.   
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