Available online at www.scholarsresearchlibrary.com

Q\\ed Sc/@
v.
s »
. [
\ Scholars Research Library i’@?&
5 @
Q N
Scholars Research Archives of Applied Science Research, 2013, 5 (6):49-60 s (v\i’
(http: //scholarsresear chlibrary.convarchive.html)
L/b/'af'y

I SSN 0975-508X
CODEN (USA) AASRC9

The useof linear parametric approximation in numerical solving of nonlinear
non-smooth Fuzzy equations

Majid Hallaji', Assef Zare? and Ali Vahidian Kamyad?®
!Neyshabur Branch, Islamic Azad University, Neyshabur, Iran

Gonabad Branch, Islamic Azad University, Gonabad, Iran
3Ferdowsi University, Mashad, Iran

ABSTRACT

In this approach (The linear parametric approximation), the nonlinear functions is approximated by a piecewise
linear functions. The obtained solution has desirable accuracy and the error is completely controllable. With
extension this approach, we propose a new two-step iterative method for solving nonlinear fuzzy equations and
nonlinear non-smooth fuzzy equations. Finally some numerical examples are given to show the efficiency of the
proposed approach to solve same equations in the other references.
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INTRODUCTION

In recent years much attention has been givenveldg iterative type methods for solving nonlineguations like
F(x) = 0. Because the Systems of simultaneous mesli equation play a major role in various areah s
mathematics, statistics, engineering and sociahseis. The concept of fuzzy numbers and arithropécation with
these numbers were first introduced and investibate [5,8,13-15,17]. One of the major applicatiarfisfuzzy
number arithmetic is nonlinear equations whoserpatars are all or partially represented by fuzzsnbers [1, 6,
10]. Standard analytical techniques presented bgkiBy and Qu in [2 — 5]. Standard analytical tecluas like
Buckley and Qu method [1-4], cannot be suitablesédving the equations such as:

(ax +bx* +ox® +dx—-e=f,
(i)x—-sin(x) = g,
(iii) f (x) =X,

Where x,a,b,c,d,e, f and g are fuzzy numbers. Moreover famous of classicaherical methods such as:

Newton and Newton-Raphson are unable to solve ¢imesmooth equations such &$ii) equation.We therefore

need to develop the numerical methods to find dwsrof such equations. Here, we consider thesatieqs, in
general, ag= (x) = 0.
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In this paper we introduce a new approach to selwgroximately nonlinear non-smooth fuzzy equatioéch

don’t have any limitation upon convexity and sma@bs of the nonlinear fuzzy functions. In this aggh any
given nonlinear fuzzy function is approximated bgiacewise linear function with controlled errorialhis based
on generalization of Taylor linear expansion of sthdfunction. Also we represent an efficient altfun to solve of
approximated fuzzy problem. One of the main adwgegaof our approach is that it can be extendeddblems
with nonlinear non-smooth fuzzy functions by intngthg a novel definition of Global Weak Differentan in the
sense of L1-norm [19]. The paper is organized hsvio

In Section two, we recall some fundamentabults of fuzzy numbers. In section three welarpthe
approach of linear parametric approximation for lim@ar equations. We verify in the fourth sectibie tapproach
extended for non-smooth nonlinear equations byoéhicing the definition of global weak different@ti We
extended the approach in section five for solvimzzf nonlinear equations. In the sixth sectiohs,approach was
extended for solving of non-smooth nonlinear fueguations. Finally some illustrative examples aadclusions
are given to show the effectiveness of the propegpgdoach.

2. Preiminaries
Definition 2.1. A fuzzy number is a fuzzy set likd : 0 - | =[0]1] which satisfies [9,16,18],

1. U is upper semi continuous,

2. u(x) = Ooutside some interv&ﬁ,d],

3. There are real numbegsb such thatc<a<b<d and

3.1 u(x) is monotonic increasing oEm, a],

3.2 u(x) is monotonic decreasing c{b,d] ,

3.3 u(x)=Las<x<h.

The set of all these fuzzy numbers is denoted bArEequivalent parametric is also given in [20Falws.

Definition 2.2. A fuzzy numberU in parametric form is a paifu, U) of function
u(r),u(r),0<r <1, which satisfies the following requirements:

1. u(r) is a bounded monotonic increasing left continuomstion,
2. u(r) is a bounded monotonic decreasing left contindonstion,

3.u(r)su(r), 0<r<1.
A popular fuzzy number is the trapezoidal fuzzy emu = (X,, Y,,0, B) with interval defuzzifier[xo, yo]and
left fuzzinessO and right fuzzinesg3 where the membership function is:

1
;(x—x0+a) X, —O S XS X,
1 XO[%;, Yol,
u(x) = 1
ﬁ(yO_X+ﬁ) yOSXSyO-i-ﬁ’
0 otherwise.

Its parametric form is:
ur)=x,—o+or, )=y, +5-4.

Let TF () be the set of all trapezoidal fuzzy numbers. Thditemh and scalar multiplication of fuzzy numbers a
defined by the extension principle and can be edently represented as follows.

For arbitraryu = (u,U),v = (v,V) and k > 0 we define addition(u + v) and multiplication by scalek as:
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U+W(r)=u+y, U+V)(r)=T+Y,
(ku)(r) =ku(r), (ku)(r) =ka(r).

3. The approach of linear parametric approximation for nonlinear equations[19]
Consider thef (x) =0 is a nonlinear smooth function. We may approxinthe nonlinear functionf (x) by a

piecewise linear function defined on [a, b]. Letnusntion the following definitions.
Definition 3.1. Let P, ([a,b]) be a partition of the intervdil, b] as the form:

P2 bl) ={a=x,, ..., =5}

Whereh = b=

n
P, ([ b])]| = max {x - x_}
It is easy to show thEHTPn ([a b])|| - Oasn - oo,

a .
and X, =X, +ih. The norm of partition defined by:

Definition 3.2. The function f; (X,s) is defined as follows:
A
fi(xs)=f(s)x+ f(s)=-sf'(s) xO[x,x] i=1...n
where s, J(X_;, X ) is an arbitrary point. The functioff, (x ,s ) is called the linear parametric approximation of

f(x) on[X_,X] at the points, J(X_,, X ). (In usual linear expansion the poist is fixed, but here we assume

S is a free point ifix_, X ] .

Now, we defineg,(X) as the parametric linear approximation ©fx) on[ a, b] associated with the partitioR, as
follows:

9,09 = 2118 0] &

where Y, is the characteristic function and defined asWelo

00 = 1 xOA
X0 oA

The following theorems are shown thg, (X) is convergence uniformly to the original nonlindanction f (x)

when ||P, ([&, b])|| - 0. In the other word we show that:

g, - f unformalyon hb]as|P([ab])|-0

The following theorems are shown thgt (X) is convergence uniformly to the original nonlinéanction f (x)

when P, ([a, b])|| — 0. in the other word we show that:

g - f unformly onp b]as

P.(ab))| -0
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Lemma 3.1. Let P,([a,b]) be an arbitrary regular partition[af b] . If f(x) is continuous function ofa, b] and
X,sO[x_,, %] are an arbitrary points then:

lim fi(xs)=f(x).

IF. (abD] -0
Proof. The proof is an immediate consequence of thenitiefn.
This lemma shown thag), — f point-wise on[a, b].

Definition 3.3. A family F of complex functionsf defined on a setA in a metric spac¥ , is said to be
equicontinuous onA if for every £ >0there existsS > 0 such that whenevdi(x,y)<d,xOA yOA fOF.
Here d (x, y) denotes the metric oA (see [7]).

Since{g,(X)}is a sequencief x)-f (y)| < & of linear functions it is trivial that this sequenis equicontinuous.

Theorem 3.1. Let { .} is an equicontinuous sequence of function on a emtnpet A and{ f } converges point-

wise on A. Then{ f .} converges uniformly oA .
Proof. See [19].

Theorem 3.2. Let g, (X) is a piecewise linear approximation 6{x) on [a, b] as (1). Then:

g, — funformaly on[ab].
Proof. The proof is an immediate consequence of LemmarddiTheorem 3.1 in [19].

Now, we introduce a novel definition of global erfor approximatedf (x) with linear parametric functiog, (X)
in the sense of L1-norm which is a suitable critetio show the goodness of fitting.

Definition 3.4. Let f(x)be a nonlinear smooth function defined pab] and let g, (X) defined in (4) be a
parametric linear approximation df(x) .Let the global error for approximation of the ftinon f (X) with function

g, (X)in the sense ot -norm is defined as follows:
a:EUQyQJQW:ZKWHm—numx
i=1 "0t

It is easy to show thaE, tends to zero uniformly Wheﬂﬁ’n([a, b])|| — 0. This definition is used to make the fine
partition which is matched with a desirable accyrac

4. Extension of linear parametric approximation for solving fuzzy nonlinear equations

Now our aim is to obtain a solution for fuzzy nowar equatioI:T:(x) = 0.The parametric form of two step method
is as follows:

{EQ(,)‘(,r)zo,

— Or O[O0
Frn=g Ol @
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Therefore, by use the linear parametric approximmathipproach (generalization of Taylor linear expamsof
smooth function) oF , F , then Or 0[01] ,we define the functioR, (X,S,r) =0 as follows:

F (x,%.5.1)= (s, 0)x+ f(5.1) -8 £'(8.0); XO[% 1. X] - o
- - - - 1=4...,
F (x,X,5,1)=f'(5,)x+ f(5,1) -5 f'(§,r); XO[X_y,%]

where s, J(X,_,, X )andS O(X_,,X ) are an arbitrary point. The functidn; (X; ,S;,I') is called the lower bound
linear parametric approximation ofﬁfi (x,5,r) on[x_,x]at the points,and F (X ,5,r) is called the upper

bound linear parametric approximation d?f; (x,5,r) on[X_,,X ]at the poin§, .

Now, we defineé-n (X,5,r) as the parametric linear approximation Iglf(x,s,r) on [a, b] associated with the

partition P, as follows:

G, (x,5.1) = D LE, (%5, 1) ()]
N 4)
G, (x,5.1) = 2[R (X,8,1) X5(X)]

where A=[x,;,x ], A=[X_,X]and Xa + Xz are the lower bound and upper bound charactefistictions
respectively and defined as below:

1 xOA 1
)(A(Z)—{O xOA 'XA(X)_{O <

x|

OA -
DA

The following theorems are shown thé-n (X,§ ,I) is convergence uniformly to the original nonlindaezy
equation E. (x,5,1) When" P.([a b])" - 0. In the other word we show that:

{g()_(’§i1r) - Ei ()_(’§i1r)

C (S.1) - FXS.D) unformly on | b Jas|P,([a,b])| - O

Lemma4.l. Let P,([a b]) be an arbitrary regular partition[a b] . If IE| (X,S,r)and F, (x,s;,r) are continuous
function on[a,b] and x ,X,S U[X_;,X] . § O[X_,, X ] are an arbitrary points then:

. Ei(xs,r)=E(x.r)
=>4 _ (6)
Ipaon-o (R (X5,r)=F(X,r).
Proof. The proof is an immediate consequence of the digimiThis lemma shown that
én (x,5,r) - IEI (X,§,r) point-wise on[a, b].
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Base on definition 2.4 and extension of@,, (X,s;,r)and En (X,S,r)are sequence of linear fuzzy functions it is
trivial that this sequence is equicontinuous. Mesrobase on Theorem 3.1F, (X,S;,r)and I?, (X,s,r)

converges uniformly oA, A in metric spaceX , X respectively.

Theorem 4.1. Let {F }and {I?n} are equicontinuous sequence of function on a pamh set s ofA,K
A

respectively and E  }, { Ifn} converges point-wise orA, A . Then {F. .} { Ifn} converges uniformly onA,
respectively.

Proof. Since {F .}, { I?n} are sequences of equicontinuous fuzzy functiom_\oﬁ then:

O0&e>0CJ0>0st

d(x,y)<d f.-f (y)<e _

{ L__X_/) - ‘—_” _—” _‘ X:YDA- X,VDA, n:lzn"'-
dx.y<o ||f,(0-f.(<e

~N(X,0).Since A,A are

For each x[(OA, X Athere existsd>0 such that AJ UéDA N(x,0),A O UmA
compact, this open covering @&, A have a finite sub-covering. Thus, there existmigef number of points such
as: X,,X,,...,X, in A and X, X,,...,X, in Asuch thatA [J U:ZIN()_(i 0), A Uir:lN(Yi ,0) .Therefore for

eachx(JAand XA there existsx, 1A, X [ A respectively fori =12,...,r; such that:

d(x,x)<0
d(X,x)<o
We know En,lfn are point-wise convergent sequences then thestsexinatural numbeN such that for each

n=N,m= N we have:

|En(l() _Em(l()| = ‘Em(l() _Em()_(i) +Em(l(i) _En(l(i) +En(l(i) _En(l( )‘

(7)
SIEn(®) = EnX)| +[En(%) = Ea ()| #[Ea(x) = Fo(x ) < 3.

®)

Then according to the Theorem 7.8 in [7] the seqediF }, {F.} are uniformly continuous oA, A and the
proof is completed.

Theorem 4.2. Let G (x) andG, (X) are piecewise linear approximations & (x), F (X) respectively or{a, b]
.as (4). Then:

— _ unformaly on|a, ojf .
G, -F y

Proof. The proof is an immediate consequence of LemmarddiTheorem 3.1.
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5 .Extension to nonlinear non-linear non-smooth fuzzy equations

In general it is reasonable to assume that thectibgefunction is a non-smoothness. Therefore winde kind of
generalized differentiation for non-smooth functoim the sense of L1-norm. This kind of differetitia is
coinciding with usual differentiation for smoothnfttions. Therefore the following theorem is repnésd.

Theorem 5.1. Consider the nonlinear non-smooth functibni A - R whereA = |_|in:1[a1., b].

Then the optimal solution of the following optimiza problem is f'(X).
... b (b
Minimize[ [ |f (0= (f(s)+(x-9).p(s)x,...dx, )
P()

whereS=(S,,S,,-..,S,) U Ais an arbitrary point and®(.) = (B(.),R.(.),-.., P,(.)) is a vector.

Proof. See [22].
Definition 5.1. Let f:A - Ris a non-smooth function whereA = |_|in:l[a1.,b|]. The global weak

differentiation with respect to x in the sense df-norm is defined as thd?(.)the optimal solution of the
minimization problem which is shown in (9).

Now based on Theorem 4.1 and definition 4.1,we @sed extension method for non-linear non-smootlzyfuz
functions as following:

Considerlz(x) is the nonlinear non-smooth fuzzy function. Based Theorem 4.1we have non-smooth fuzzy
problem as follows:

Minimize] -, [Fr - (Fsrn +(x-9).5(sr)xds (10)
P() 1 n
Where :IE(x,r) = {E@’i’r)’ , IE(s,r) ={E(§’§’r)’ , p(s,r) = {L_)(g?r) and r J[0]].
F (x,X,r), F(s,5.1), p(s,s,r)

With use of two step method, non-smooth fuzzy pobtonvert as follows:

Minimizel, [ [E@x0=(E©sn +(x=9.pesn)xds

(11)

Mi nj(r)ni zeI:I: F%r)=(F(s5r)+(x- s).ﬁ(§,§,r))|did§

And in end, we use cAVK method [21] for solving above problems .With SLW&D[ 0,0.5,1] , hon-smooth
fuzzy minimization problem (9) is formed as:

Minimi 263 [/} (xr) = (F(s1) + (x-9):Bls.r) s 12)

b
Remark: As we know, an approximate value of integ{rak(x)dx = (b—a)k(c)wherec is any point such as:
a

asc<h.
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So, based two step method, AVK method, applyingvab@emark, and assume is an ending point in any
subinterval ands is middle point on , (11)is formed as

M|n|m|zeZ Z( FGN-(FGEN+G )p(Zn,r))Ij

r=0 i1
J (13)

Where: )g D[' -1 '] 5 DXI = 2' and)(I S .As a whole, problems (13) is a NLP problem andnasey

nn
obtain its solution by many packages such as LMgdab, Gino, etc.

r=0 i=1

Minimize i[%F( 1= (FEEN* G- P )

6. Numerical application

Here we present examples to illustrating the lingarametric approximation method for find positimots of
nonlinear fuzzy equations and nonlinear non-sméathy equations. Examples 1 and 2 consider fromkiyc Qu
[1] and S. Abbasbandy, B. Asady [20].

Example 6.1. Consider the fuzzy nonlinear equation
(345)x* + (1,23)x= (1,23
Without any loss of generality, assume that x isitpee and then the parametric form of this equaisas follows:

B+r)X*+ L+1)x—(+r)=0
G-r)x2+(3-r)X-@3-r)=0

To obtain initial guess we use above systemrferO, r =1, therefore:

MA@ =2 [0 +x(0) =1

457 (1) + 2% (1) = 2 5%2(0) + X(0) =3
we obtain the solution for n=10 and with the Megunaed normalized error( MSE),7.1191e-007. For ndetails
see Figs. 1. Now suppose x is negative, haf0 > X(0) , therefore negative root does not exist.

Example 6.2. Consider fuzzy nonlinear equation
1,23)x% + (234)x* + (345) = (5813

Without any loss of generality, assume that x isitp@ and then parametric form of this equatioasgollows:
@)X’ (r)+ +1)X(r) + (3+r) = (5+3r)

{(S—r)XS(r)+ (B-r)X*(r)+ (5-r) = (@3-5r)

Or equality:
@Wn)X’(r)+@+1)x(r) - (2+2r) =0

{(3—r)23(r) +(@B-r)X°(r)-(8-4r)=0

We apply proposed method, for n=10 and show r@sig. 2 with MSE= 9.6773e-007.
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Example 6.3. In this example we consider a nonlinear non-sméathy function as follows:

f &)= (345X + 123X~ 123

Since objective function is non-smooth fuzzy fuaotiWe find the global weak differentiation (f?(x) which is
the optimal solution of the following optimizatigmoblem .we solves this problem based two step adeimd AVK
method for n=10 and with suppo¥d_] [0,1] as follows:

1 n
Minimize.>.
P() r=0 i=l

Minimize>: >

i=1

(,11[(3+ NG+ @+nf - @n]-[E+nE)? + @+ iz - a+n)- peE)

(Hs-ny+e=nil-e-nl-ls-ne + e-niel - 6-nl-poE)

Minimi 28 ([ 6+ + grry-@en]-{E+ns'+ aerjg-aen]- poc-9)w

Minimi 28 ([ [6-n%+ 8-nx-6-n]-[5-n* + 3-8 - E-n]- HOR- 9o

)

)

Last equation is NLP problem and we obtain its tsmuby Matlab software .The optimal solution isghn in Fig.

3.

Finally we find fuzzy positive root 01f~(x) based proposed method (piecewise linear approximah Fig.4.

Table 5.1 compares approximated and exact solafidtast example. Comparison results show the effesess of

the proposed approach in the presence of fuzzynmearl non-smooth functions

Table 5.1-Numerical Results of Examplefor X (1[—11]

Nonlinear Non- Alfa Mean Lower Bound Upper Bound
smooth fuzzy cuts squared A imated A imated
function normalized Exact solution pproximate Exact solution pproximate
error solution solution
0.0 © 0.43425854591228%  0.4350645471310p4  0.53066238630590.530360293406754
0.1 8 0.44412415703456 0.4443757725587[14  0.52834255329 0.52818178820758
0.2 2 0.45293442287568bp  0.4528302554305953  0.5258823@491| 0.52588855823833
S~ 0.3 2 0.46085737412812[L  0.460540674603175 0.5233038282| 0.52347327797805
@T’ 0.4 g 0.46802583749852p  0.468375721500721  0.5205684825| 0.52092304587430
T = 0.5 e 0.474546482933995  0.475107991360691 0.5176360296| 0.51822795192202
-~ 0.6 NS 0.480506146710884  0.481295985409024 0.5145685043| 0.51537409082710
g e 0.7 N 0.48597636091927p  0.487001254955081 0.51128@03B2| 0.51234897139103
0.8 2 0.49101666768945 0.492281879194631  0.5077728202 | 0.50913512620724
0.9 o 0.495677089411156  0.497181146025878 0.5040P#66838| 0.50571445606110
1.0 0.50000000000987R  0.501448707909162  0.5000009802| 0.50144870790916
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n=10

Estimated Positive Root
Real Positive Root

(@]

S1ND V41V

0.56

0.5

0.48

0.46

0.44

0.42

Positive Root

Fig.1. Positive solution of proposed method

Estimated Psitive Root
Rael Positive Root

115

|
1
11

1.05

0.95

0.9

0.85

S1ND V41V

Positive Root

Fig.2. Positive solution and error of proposed method
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=0

Black : Weak Dfferention for r

=1

. Weak Dfferention for r

Red

15

10} - - - - -| Blue : Weak Dfferention for O<r<1 |

suonualayid 3eapn [eqo|o

-0.6 -0.4 -0.2

-0.8

-1

B45)x* + (123)X - (1.23)

Fig3-Global Weak Differ entiation of Nonlinear Non-Smooth Function f (X )

Estimated Roots
Real Roots

(@]

I |

SIno eye

0.56

Fig 4. Positive root of non-smooth fuzzy function f (X) Based Piecewise linear approximation

CONCLUSION

In this paper, we have suggested numerical solmmghod for non-linear fuzzy equations instead aihdard
analytical techniques which are not suitable eveens. Also the approach can be extended for naatimon-
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smooth fuzzy equations by a novel definition of glolweak differentiation in the sense of L1 and ld?ms. The
main advantage of this approach is that we obtamedpproximation for the optimum solution of the#y
problem with any desirable accuracy. Initially weote nonlinear and non-smooth fuzzy equation irapeetric
form and then solve it by the linear parametricragimation method. Finally, examples were presetdetustrate
proposed method.

REFERENCES

[1] J.J. Buckley, Y. Quiruzzy Sets and Systems 38 (1990) 43-59.

[2] J.J. Buckley, Y. Qui-uzzy Sets and Systems 38 (1990) 309-312.

[3] J.J. Buckley, Y. Quiruzzy Sets and Systems 39 (1991) 291-301.

[4] J.J. Buckley, Y. Quiuzzy Setsand Systems 43 (1991) 33-43.

[5] S.S.L. Chang, L.A. Zadeh, On fuzzy mapping andtrol, |[EEE Transactions on Systems, Man and Cybernetics
2 (1972) 30-34.

[6] Y.J. Cho, N.J. Huang, S.M. Kangyzzy Sets and Systems 110 @000) 115-122.

[7]1 J.E. Dennis, R.B. Schnabel, Numerical Meth for Unconstrained Optimization and NonlmEgquations,
Prentice-Hall, New Jerse$983.

[8] D. Dubois, H. Pradelournal of Systems Science 9 (1978) 613— 626.

[9] D. Dubois, H. Prade, Fuzzy Sets and Systemepmhand Application, Academic Press, New Yddg0.

[10] J. FangFuzzy Setsand Systems 131 @002) 357—-364.

[11] R. Goetschel, W. Voxmalruzzy Sets and Systems 18 (1986) 31-43.

[12] J. Ma, G. Fendruzzy Sets and Systems .137 003) 367—386.

[13] M. Mizumoto, Some properties of fuzzy numbeénsM.M. Gupta, R.K. Ragarde, R.R. Yager (Eds.QivAnces
in, Fuzzy Sets Theory and Applications, North-HaetlaAmsterdam]979, pp. 156—-164.

[14] M. Mizumoto, K. TanakaSystems Computers and Controls 7 (5) (L976) 73-81.

[15] S. Nahmiaskuzzy Sets and Systems 12 (1978) 97-111.

[16] L.A. Zadeh Fuzzy sets, Information and Control 8 (1965) 338—353.

[17] L.A. Zadeh, Information Sciences 3 (1975) 199-249.

[18] H.J. Zimmermann, Fuzzy Sets Theory atsd Application, Kluwer Academic Press, Dordited891.

[19] A.M. Vaziri, A.V. Kamyad, A. Jajarmi, S. EffatComputational and Applied Mathematics, Volume 30, N. 2,
pp. 427-443,2011.

[20] S. Abbasbandy , B. Asadipplied Mathematics and Computation 159 @004) 349-35.

[21] K.P. Badakhshan , A.V. Kamyad , A. AzerApplied Mathematics and Computation 189 @007) 27—-34.
[22]A.M. Vaziri, AV. Kamyad, S. Effati and M. Gaphzan, A parametric linearization approach for isglv
nonlinear programming problemaligarh Journal Statistics, Article in press.

60
Scholars Research Library



