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ABSTRACT 
 
Histone dacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones and regulate 
expression of tumor suppressor genes making them a promising therapeutic target for treatment of cancer by 
developing a wide variety of inhibitors. Developing these inhibitors requires accurate understanding of how their 
molecular structures are link to their respective inhibitory properties. A Genetic Function Approximation based 
Multi-linear regression Quantitative structure activity relationship modelling was performed on a data set of 29 
HDAC inhibitors using Semi-empirical (PM3) computational level of theory. The best QSAR model reveals that 
FMF, Kier3, n5HeteroRing, globaltopo and Kier1 descriptors have pronounced influence on the HDAC inhibitory 
properties of the compounds. The validation parameters of the best model are LOF = 0.137, R2 = 0.933, R2

adj = 
0.902, Q2

LOO = 0.841, F-value = 30.239, R2
pred. = 0.6495. The wealth of information provided by this model will 

undoubtedly be of immense help in the structural modifications of the studied molecules as a guide to discover 
additional HDAC inhibitors with greater therapeutic utility. 
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INTRODUCTION 
 

Cancer is a group of diseases characterized by uncontrolled growth and spread of abnormal cells. According to 
estimates from the International Agency for Research on Cancer (IARC), there were 12.7 million new cancer cases 
in 2008 worldwide, with economically developing countries having 7.1 million cases [1]. More recently, the 2016 
Cancer Facts and Figures (CFF) revealed that about 1,685,210 new cancer cases are expected to be diagnosed in 
2016 globally [2], with these figures, the disease poses serious health risk to man. Incessant search for newer 
therapeutic agents is certainly not debatable. 
 
Histone dacetylases (HDACs) stand as promising therapeutic targets for treatment of cancer because these 
compounds are highly implicated in this disease. HDAC inhibitors interfere with HDAC activity and regulate 
biological events, such as cell cycle, differentiation and apoptosis in cancer cells. As a result, HDAC inhibitor-based 
therapies have gained much attention for cancer treatment. To date, the FDA has approved three HDAC inhibitors 
for cutaneous/peripheral T-cell lymphoma and many more HDAC inhibitors are in different stages of clinical 
development for the treatment of hematological malignancies as well as solid tumors [3]. 
 
Concerted efforts aimed at discovering new and hopefully more therapeutically efficacious HDAC inhibitors entails 
adequate harnessing of the molecular descriptors having direct link with this bioactivity (i.e., HDAC inhibitory 
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properties). These descriptors can be optimized in the molecules to achieve the aforementioned aim. This can be 
achieved via Quantitative Structure Activity (QSAR) Modelling.  
 
Quantitative structure activity relationship (QSAR) study provides medicinal chemists valuable information that is 
useful for drug design and prediction of drug activity. QSAR models are mathematical equations which construct a 
relationship between chemical structures and their biological activities as a linear regression model in the form Y = 
Xb + e. This equation may be used to describe a set of predictor variables (X) with a predicted variable (y) by means 
of a regression vector (b) [4].The physicochemical properties predicted from structure are helpful in the search for 
new molecules of similar or increased biological activity. QSAR studies enable the investigators to establish reliable 
quantitative relationships, to derive a QSAR model, and predict the activity of novel molecules prior to their 
synthesis. These studies reduce the trial-and-error element in the design of compounds by establishing mathematical 
relationships between physical, chemical, biological, or environmental activities of interest and measurable or 
computable physicochemical, electronic, topological, or stereo chemical parameters [5]. 
 
The aim of this work is two-fold; to harness the principal molecular descriptors responsible for the observed HDAC 
Inhibitory activities of the studied molecules and to build robust QSAR model for predicting this bioactivity in 
HDAC inhibitors. 

MATERIALS AND METHODS 
 

The general scheme for this work is depicted in Fig. 1. A set of 29HDAC Inhibitors were gotten from literature 
[6].The general molecular structures of the studied compounds are shown in Table 1.The inhibitory activity values 
of these compounds were calculated in IC50values which were converted to –logarithmic (-logIC50 or pIC50) scale 
to be utilized in this study.  
 

 
Fig 1: QSAR methodology flowchart 
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Table 1: Chemical Structure and Experimental pIC50 of the Data set 
 

Cd Structure pIC50 Cd Structure pIC50 
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Molecular optimization was performed at Semi-empirical (PM3) level of theory with the aid of Spartan 14 V.1.1.0 
program (Spartan 14). The 0D, 1D, 2D and 3D descriptors of the optimized molecules were calculated using Padel 
descriptor tool kit and Spartan’14 softwares. Descriptors are the numerical representation of molecular structures. 
The information about any molecular structure is encoded by descriptors.  
 
The data set of the 29 compounds was manually split into 70% training set (20 compounds) and 30% test set (9 
compounds). The training set was used to adjust the parameters of the model while the test set was used to evaluate 
its prediction ability. 
 
In the model building stage, the correlations between pIC50 of the compounds and the calculated descriptors were 
obtained via correlation analysis using the Microsoft excel package in Microsoft office 2013. Pearson's correlation 
matrix was used to select the suitable descriptors for the GFA regression analysis. The selected descriptors were 
subjected to regression analysis with the pIC50 as the dependent variable and the selected descriptors as the 
independent variables using Genetic function approximation (GFA) method in Material studio software. The best 
model is the one with the least lack of fit (LOF) score. LOF is measured using a slight variation of the original 
Friedman formula, so that best model received the best fitness score [7]. 
 
In Materials Studio, LOF is measured using a slight variation of the original Friedman formula (Friedman, 1990). 
The revised formula is: 
 
��� = SSE / (1 −

���	



)2                                                                                 1 
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Where SSE is the sum of squares of errors, c is the number of terms in the model, other than the constant term, d is a 
user-defined smoothing parameter, p is the total number of descriptors contained in all model terms (ignoring the 
constant term) and M is the number of samples in the training set [8]. 
 
The internal validation of the best model was performed using the well-known scheme of“ leave-one-out” (LOO) 
cross-validation. Usually, the square of LOO cross-validation coefficient (q2)should be > 0.5 for a reliable model. 
Other validation parameters deployed in this study include the square of the correlation coefficient, R2(threshold of 
≥ 0.6) [9]. External validation is also crucial to obtain QSAR models with more reliable predictive abilities. The 
optimum QSAR model was externally validated using the test set of 9 molecules with the aid of equation 2.1. 
Generally, a QSAR model is accepted to own high predictive power only if the square of predictive correlation 
coefficient (R2pred) is greater than 0.5 for the test set [9]. 
 

�	��.
� = 1	–	

∑[�	�������������]�

∑[��������������]�
                                  2 

 
Ypred.(te) and Y(te) indicate predicted and observed activity values respectively of the test set compounds and 
Ym(tr) indicates mean activity value of the training set [9]. 
 

RESULTS AND DISCUSSION 
 

Model 1gives the best Genetic Function Approximation derived QSAR model for predicting the pIC50HDAC 
Inhibitors. Likewise, its validation parameters are in good agreement with the standard validation metrics for a 
robust QSAR model proposed by Ravinchandran et al. [9]. The definition of the descriptors in the models are 
presented in Table 2. 
 
Model 1: 
 !"#$ = 	5.138993864	+,+	 − 	0.209794614	01234	 + 	0.575285910	01236	 − 	30.269180407	,789

− 44	 + 	0.319484327	:#;2<23=>1:?	 + 	7.620614156	?@=AB@C= =	 − 	13.171621619 
LOF = 0.137, R2 = 0.933, R2adj = 0.902, Q2

LOO = 0.841, F-value = 30.239 
 

Table 2: Detailed definition of descriptors 
 

Descriptor symbol Definition 
FMF Complexity of a molecule 
Kier1 First kappa shape index  
Kier3 Third kappa shape index  
MDEN-11 Molecular distance edge between all primary nitrogens 
n5HeteroRing Number of rings containing heteroatoms 
globalTopo Global topological charge index 

 
The predictability of model 1 is evidenced by the low residual values observed in Table 3 which gives the 
comparison of observed and predictedpIC50 of the HDAC inhibitors. Also, the high linearity of the plot of predicted 
pIC50against observedpIC50shown in Fig. 2 indicates that the model is well trained and it predicts well the pIC50 of 
the compounds.  
 
To ascertain whether there exists a systematic error in the model development, the residual pIC50 was plotted against 
observed pIC50(Fig. 3). The propagation of residuals on both sides of zero indicated that there was no systemic error 
in model development (Heravi and Kyani, 2004). 
 

The P-value of the optimization model at 95% confidence level shown in Table 4 has α value ˂  0.05. This reveals 
that the alternative hypothesis that the magnitude of the observed HDAC inhibitory activitiesof the studied 
molecules is a direct function of the descriptors of their total chemical structure takes preference over the null 
hypothesis which states otherwise. 
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Table 3: Comparison of actual pIC50 and pred. pIC50 of model 1 
 

Compound Experimental pIC50 Predicted pIC50 Residual 
2 1.62000000 1.30047000 0.31953000 
3 1.42000000 1.40865000 0.01135000 
5 1.31000000 1.51651600 -0.20651600 
6 1.39800000 1.53903100 -0.14103100 
8 1.00000000 0.78159500 0.21840500 
9 0.85400000 0.99135200 -0.13735200 
11 0.72100000 0.64291400 0.07808600 
12 0.72100000 0.41195200 0.30904800 
14 0.63800000 0.59705000 0.04095000 
15 0.52300000 0.37852000 0.14448000 
17 0.46300000 0.19018900 0.27281100 
18 0.45600000 0.87932100 -0.42332100 
20 0.39800000 0.33491000 0.06309000 
21 0.38500000 0.48849900 -0.10349900 
23 0.09700000 0.10872100 -0.01172100 
24 -0.02900000 -0.24556900 0.21656900 
25 -0.59000000 -0.37695400 -0.21304600 
27 -0.84500000 -0.75526500 -0.08973500 
28 -0.53100000 -0.18290000 -0.34810000 
29 -1.54400000 -1.54400000 0.00000000 

 

 
 

 
Fig. 2: Plot of experimental pIC50 against predicted pIC50 
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Fig. 3: Plot of Standardized residual verses Experimental pIC50 (Residual Plot) 
 

Table 4: P-value of model 1 at 95% confidence level 
 

Source  SS DF MS F p-value 
Difference 7.019 4 0.7612 18.2945 <0.0001 
Error 0.449 18 0.0416   

 
Null model 7.468 22 0.311   

 
 

Table 5:External Validation of Model 1 
 

Test set compounds [DEFGH�IG� − DJKL�IG�]� [DJKL�IG� − DM�IF�]� 
1 0.000147 0.025921 
2 0.002136 0.094249 
3 0.168959 0.004225 
4 0.04791 0.0324 
5 0.000257 0.776161 
6 0.141636 0.094249 
 ∑ = 0.361045 ∑ = 1.027205 

 
Using equation 2 above, R2

pred. = 1 - 0.361045 1.027205N  = 0.6495 

 
Table 5 gives the external predictability of the model. Three compounds were remove from the external test set prior 
to the calculation of R2pred. because they were discovered to be outliers. The high R2

pred. value of 0.6495 above the 
minimum threshold of 0.5 recommended for a standard QSAR model indicates that the model possesses robust 
external predictive ability. 
 
The positive coefficient of the descriptors; FMF, Kier3, n5HeteroRing, globaltopo is an indication that they vary 
directly with the inhibitory activities of the molecules. Thus, the higher the values of these descriptors in the 
molecules, the higher their HDAC inhibitory bioactivities and vice versa. In a sharp contrast to other descriptors in 
the optimization model, Kier1 descriptor varies inversely with HDAC inhibitory activities of the molecules. The 
implication is; for an enhanced HDAC inhibitory activities of the molecules, the value of this descriptor should be as 
low as possible. 
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CONCLUSION 
 

The aim of this study has been fully achieved; the dominant structural features responsible for HDAC inhibitory 
activities of the studied molecules has been successfully harnessed. The validity of the optimum QSAR model has 
been ascertained internally and externally. The wealth of information in this work will undoubtedly be of immense 
help in the structural modifications of the studied molecules as a guide to discover additional HDAC inhibitors with 
greater therapeutic utility. 
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