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ABSTRACT

Histone dacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones and regulate
expression of tumor suppressor genes making them a promising therapeutic target for treatment of cancer by
developing a wide variety of inhibitors. Developing these inhibitors requires accurate understanding of how their
molecular structures are link to their respective inhibitory properties. A Genetic Function Approximation based
Multi-linear regression Quantitative structure activity relationship modelling was performed on a data set of 29
HDAC inhibitors using Semi-empirical (PM3) computational level of theory. The best QSAR model reveals that
FMF, Kier3, n5HeteroRing, globaltopo and Kierl descriptors have pronounced influence on the HDAC inhibitory
properties of the compounds. The validation parameters of the best model are LOF = 0.137, R = 0.933, Rzadj =
0.902, Q%00 = 0.841, F-value = 30.239, Ryeq = 0.6495. The wealth of information provided by this model will
undoubtedly be of immense help in the structural modifications of the studied molecules as a guide to discover
additional HDAC inhibitors with greater therapeutic utility.

Keywords. Histone dacetylases, Semi-empirical, Kierl, CanQ&AR

INTRODUCTION

Cancer is a group of diseases characterized byntnotled growth and spread of abnormal cells. Adoay to

estimates from the International Agency for Redeant Cancer (IARC), there were 12.7 million newamancases
in 2008 worldwide, with economically developing otties having 7.1 million cases [1]. More recentlye 2016
Cancer Facts and Figures (CFF) revealed that @h686,210 new cancer cases are expected to beodiegrin

2016 globally [2], with these figures, the disegseses serious health risk to man. Incessant sdarchewer

therapeutic agents is certainly not debatable.

Histone dacetylases (HDACs) stand as promisingatieartic targets for treatment of cancer becauseethe
compounds are highly implicated in this disease.ABDinhibitors interfere with HDAC activity and relzte
biological events, such as cell cycle, differemiatand apoptosis in cancer cells. As a result, i@D@hibitor-based
therapies have gained much attention for cancatnrent. To date, the FDA has approved three HDAfbitors
for cutaneous/peripheral T-cell lymphoma and margrenHDAC inhibitors are in different stages of ddal
development for the treatment of hematological gmaihcies as well as solid tumors [3].

Concerted efforts aimed at discovering new and fublgemore therapeutically efficacious HDAC inhibis entails
adequate harnessing of the molecular descriptorsdpalirect link with this bioactivity (i.e., HDAGnhibitory
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properties). These descriptors can be optimizetthénmolecules to achieve the aforementioned ains G¢an be
achieved via Quantitative Structure Activity (QSARddelling.

Quantitative structure activity relationship (QSARudy provides medicinal chemists valuable infdramathat is

useful for drug design and prediction of drug agtivQSAR models are mathematical equations whifstruct a
relationship between chemical structures and thielngical activities as a linear regression mddehe form Y =

Xb + e. This equation may be used to describe afggedictor variables (X) with a predicted vataly) by means
of a regression vector (b) [4].The physicochemjmalperties predicted from structure are helpfulhie search for
new molecules of similar or increased biologicdlvity. QSAR studies enable the investigators tialelésh reliable
quantitative relationships, to derive a QSAR modeld predict the activity of novel molecules prior their

synthesis. These studies reduce the trial-and-eleonent in the design of compounds by establistiathematical
relationships between physical, chemical, bioldgioa environmental activities of interest and meable or
computable physicochemical, electronic, topologioaktereo chemical parameters [5].

The aim of this work is two-fold; to harness thépipal molecular descriptors responsible for thsesved HDAC
Inhibitory activities of the studied molecules atdbuild robust QSAR model for predicting this bitgity in
HDAC inhibitors.

MATERIALSAND METHODS

The general scheme for this work is depicted in EigA set of 29HDAC Inhibitors were gotten fronteliature

[6].The general molecular structures of the stugiechpounds are shown in Table 1.The inhibitoryvéigtivalues

of these compounds were calculated ig¥@lues which were converted to —logarithmic (-log0Cor pIC50) scale
to be utilized in this study.

L Data collection |
| Molecular optimization J
| Descriptor calculation J
L Ll e J Test set J
L ik il |
{ Model \ Validation J

Fig 1: QSAR methodology flowchart
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Table 1: Chemical Structure and Experimental pl Cs, of the Data set
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Molecular optimization was performed at Semi-engairi(PM3) level of theory with the aid &partan 14 V.1.1.0
program (Spartan 14). The 0D, 1D, 2D and 3D desmspof the optimized molecules were calculatesgiBiadel
descriptor tool kitandSpartan’14 softwaresDescriptors are the numerical representation @eoular structures.
The information about any molecular structure isceled by descriptors.

The data set of the 29 compounds was manually ispit70% training set (20 compounds) and 30% $est(9
compounds). The training set was used to adjuspainemeters of the model while the test set wad tsevaluate
its prediction ability.

In the model building stage, the correlations betwplG, of the compounds and the calculated descriptorg wer
obtained via correlation analysis using the Micfosacel package iMicrosoft office 2013 Pearson's correlation
matrix was used to select the suitable descripgtmrdhe GFA regression analysis. The selected g#scs were
subjected to regression analysis with the ;pl& the dependent variable and the selected dessrips the
independent variables using Genetic function apgpration (GFA) method in Material studio softwarehelbest
model is the one with the ledsick of fit (LOF) score. LOF is measured using a slight vamabf the original
Friedman formula, so that best model received ##t fithess score [7].

In Materials Studiq LOF is measured using a slight variation of thiginal Friedman formula (Friedman, 1990).
The revised formula is:

LOF:SSEII—CLﬂ)Z 1

59
Available online @ www.scholar sresear chlibrary.com




Bamidele M. Omotola et al J. Comput. Metlsolllol. Des, 2016, 6 (3):55-63

Where SSE is the sum of squares of errors, c iadh#er of terms in the model, other than the @mderm, d is a
user-defined smoothing parameter, p is the totatber of descriptors contained in all model terngmdring the
constant term) and M is the number of samplesértridining set [8].

The internal validation of the best model was penfed using the well-known scheme of* leave-one-quDO)
cross-validation. Usually, the square of LOO creakdation coefficient (§should be > 0.5 for a reliable model.
Other validation parameters deployed in this stadjude the square of the correlation coefficigf(threshold of
> 0.6) [9]. External validation is also crucial tbtain QSAR models with more reliable predictivelidibs. The
optimum QSAR model was externally validated usihg test set of 9 molecules with the aid of equafich
Generally, a QSAR model is accepted to own higtdiptiwe power only if the square of predictive alation
coefficient (Rpred) is greater than 0.5 for the test set [9].

) _ 1 _ Zlrpred(te)-Yobs(te)]*
Rprea. =1 Y[vobs(te)-ym(tr)]? ?

Ypred.(te) and Y(te) indicate predicted and obsgraetivity values respectively of the test set commls and
Ym(tr) indicates mean activity value of the traipiset [9].

RESULTSAND DISCUSSION

Model lgives the best Genetic Function Approxinmatierived QSAR model for predicting the pd8DAC
Inhibitors. Likewise, its validation parameters a@megood agreement with the standard validationricgetfor a
robust QSAR model proposed by Ravinchandeaal. [9]. The definition of the descriptors in the netl are
presented in Table 2.

Model 1:
pICsy = 5.138993864 FMF — 0.209794614 Kierl + 0.575285910 Kier3 — 30.269180407 MDEN
—11 + 0.319484327 n5HeteroRing + 7.620614156 globalTopo — 13.171621619
LOF = 0.137, R=0.933, R,5= 0.902, G o0 = 0.841, F-value = 30.239

Table 2: Detailed definition of descriptors

Descriptor symb Definition

FMF Complexity of a molecu

Kierl First kappa shape index

Kier3 Third kappa shape index

MDEN-11 Molecular distance edge between all primary nitna
n5HeteroRing Number of rings containing heteroatoms
globalTopo Global topological charge index

The predictability of model 1 is evidenced by tlevlresidual values observed in Table 3 which githes
comparison of observed and predictedgl@ the HDAC inhibitors. Also, the high linearity the plot of predicted
plCspagainst observedplgghown in Fig. 2 indicates that the model is wellrted and it predicts well the pjgof

the compounds.

To ascertain whether there exists a systematic grthe model development, the residual gl®as plotted against
observed plgy(Fig. 3). The propagation of residuals on both sidezero indicated that there was no systemiaerro
in model development (Heravi and Kyani, 2004).

The P-value of the optimization model at 95% coatfice level shown in Table 4 hasalue< 0.05. This reveals
that the alternative hypothesis that the magnitofiehe observed HDAC inhibitory activitiesof theudied
molecules is a direct function of the descriptofsheir total chemical structure takes preferengercahe null
hypothesis which states otherwise.
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Table 3: Comparison of actual pl Cs, and pred. pl Cs, of model 1

Fig. 2: Plot of experimental pl Csp againg predicted pl Csy

Compound | Experimental pICsy | Predicted plCs; | Residual
2 1.62000000 1.30047000 0.31953000
3 1.42000000 1.40865000 0.01135000
5 1.31000000 1.51651600 -0.206516/00
6 1.3980000 1.5390310 -0.1410310
8 1.00000000 0.78159500 0.21840500
9 0.85400000 0.99135200 -0.13735200
11 0.72100000 0.64291400 0.07808600
12 0.72100000 0.41195200 0.309048p0
14 0.63800000 0.59705000 0.04095000
15 0.5230000 0.3785200 0.1444800
17 0.4630000 0.1901890 0.2728110
18 0.45600000 0.87932100 -0.42332100
20 0.39800000 0.33491000 0.06309000
21 0.38500000 0.48849900 -0.10349900
23 0.09700000 0.10872100 -0.01172100
24 -0.0290000 -0.2455690 0.2165690
25 -0.5900000 -0.3769540 -0.2130460
27 -0.84500000 -0.75526500 -0.08973500
28 -0.53100000 -0.18290000 -0.34810000
29 -1.54400000 -1.54400000 0.000000p0
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Fig. 3: Plot of Standardized residual ver ses Experimental plCs, (Residual Plot)

Table 4: P-value of model 1 at 95% confidence level

Source SS DH MS F p-value
Difference | 7.019 4 0.7612 18.2945 <0.0001
Error 0.449| 18| 0.0414
Null model | 7.468| 22 0.31]

Table 5:External Validation of Model 1

Test set compounds [Ypred(te) — Yobs(te)]? | [Yobs(te) — Ym(tr)]?
1 0.000147 0.025921
2 0.002136 0.094249
3 0.168959 0.004225
4 0.04791 0.0324
5 0.000257 0.776161
6 0.141636 0.094249
S = 0.361045 S = 1.027205

Using equation 2 aboveRq= 1 —0-361045/1.027205 =0.6495

Table 5 gives the external predictability of thedab Three compounds were remove from the exteesalset prior
to the calculation of ?g,ed, because they were discovered to be outliers. Tdite Ith,ed,value of 0.6495 above the
minimum threshold of 0.5 recommended for a stand@8RAR model indicates that the model possessesstobu

external predictive ability.

The positive coefficient of the descriptors; FMAgi3, n5HeteroRing, globaltopo is an indicationtttiey vary
directly with the inhibitory activities of the maleles. Thus, the higher the values of these ddscsipn the
molecules, the higher their HDAC inhibitory bioatties and vice versa. In a sharp contrast to otlescriptors in
the optimization model, Kierl descriptor variesérsely with HDAC inhibitory activities of the moleles. The
implication is; for an enhanced HDAC inhibitory &dties of the molecules, the value of this desmnighould be as

low as possible.
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CONCLUSION

The aim of this study has been fully achieved; dbeninant structural features responsible for HDAGibitory
activities of the studied molecules has been sgbgds harnessed. The validity of the optimum QSARdel has
been ascertained internally and externally. Theltwed information in this work will undoubtedly bef immense
help in the structural modifications of the studiadlecules as a guide to discover additional HDAKKitors with
greater therapeutic utility.
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