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ABSTRACT

Quantitative Structure—Activity Relationship (QSAR)del is presented for the estimation of the ttyxaf 28 nitro-
aromatic compounds including some well-known expdss This work was conducted using the principal
component analysis (PCA) method, the multiple linezgression method (MLR), the multiple non-linear
regressions (MNLR) and the artificial neural netwofANN). The predicted results of various nitro4@etic
compounds afford reliable prediction of tPwith respect to experimental data. Density funaiotheory (DFT)
calculations have been carried out in order to getights into the structure, chemical reactivitydaproperty
information for the series of study compounds. Bhisly shows that the MLR and ANN have servedtalpeedict
activities, but when compared with the results gilg the RNLM, we realized that the prediction§ilfedl by this
latter were more effective.

Keywords: Toxicity, nitroaromatic, 3D-QSAR model, DFT study.

INTRODUCTION

Nitro-aromatic compounds are relatively rare inunatand have been introduced into the environmezihlgnby
human activities; they are widely used in medicimglustry and agriculture. This important classirdustrial
chemicals is widely used in the synthesis of maiwerde products, including dyes, polymers, pestigjdand
explosives. Unfortunately, their extensive use ledsto environmental contamination of soil and grbwvater [1].
The nitro group, which provides chemical and fumadil diversity in these molecules, also contributeshe
recalcitrance of these compounds to biodegradaRetalcitrance is further compounded by their atoxecity,
mutagenicity, and easy reduction into carcinogem@matic amines. Nitro-aromatic compounds are logeer to
human health and are registered on the U.S. Enmiental Protection Agency's list of priority pollata for
environmental remediation. Although the majoritytbése compounds are synthetic in nature, microisge in
contaminated environments have rapidly adaptetid¢d presence by evolving new biodegradation paylkswhat
take advantage of them as sources of carbon, eittcand energy [2,3]. This review provides an osmnof the
synthesis of both man-made and biogenic nitro-atiencempounds, the bacteria that have been idedtifd grow
on and completely mineralize nitro-aromatic compisjrand the pathways that are present in thesesstiBhe
possible evolutionary origins of the newly evolymthways are also discussed.

Since its introduction more than forty-five yeagod4], structure-activity relationships have beatveloped for
various areas of applications, e.g. estimatindnefdifferent substance characteristics as weheis toxicity levels.
Quantitative structure activity relationships (QSAdRe widely used to predict toxicity from chemisalucture and
corresponding physicochemical properties. The agweént and application of QSAR techniques startitd thie
prediction of toxicity caused by baseline toxicaas The numerous QSAR studies have been carnigdnoorder
to explain or predict toxic influence of nitro-comymds on different living systems [6,7]. In theertpapers [8,9]
the QSAR analysis of oral toxicity on rats has béeveloped on 28 selected nitro-aromatic molecuitethis work
we describe structure-toxicity relationship for #fove compounds using simpler descriptbnerefore, the aim of
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the present study is the analysis of possibilitypodliminary virtual screening of toxicity of nitmromatics by
QSAR models on the base of their molecular comjposiaind there are a large number of molecularrgeecs that
can be used in QSAR studies. Once validated, tikniys can be used to predict activities of untestampounds.
In this study, we have modeled the toxicity of salerganic compounds based on nitro-aromatic (f€idy using
several statistical tools, principal componentdyasia (PCA), multiple linear regression (MLR), niple non-linear
regression (MNLR) and artificial neural network (AN calculations. The objectives of this work ared&velop
predictive QSAR models for the toxicity of our siedl molecules. On the other hand, several quantuemical
methods and Quantum-chemistry calculations have pegformed in order to study the molecular strrectand
electronic properties [10,11]. The geometry as vesll the nature of their molecular orbital, HOMOgttést
occupied molecular orbital) and LUMO (lowest unguiea molecular orbital) are involved in the propestof
biological activity of organic compounds. The moetevant molecular properties were calculated,eh@eperties
are the highest occupied molecular orbital energyb, the lowest unoccupied molecular orbital enegyvo,
energy gapAE, dipole moment, the total energ¥+, the activation energlg, and the absorption maximukpay.

MATERIALS AND METHODS

Material

Previous studies [12] had established a quant#athodel of structure activity(QSAR) relationshipr feeries
molecular structures approach have been appliegredict the oral rat toxicity of selected nitraaratic
compounds. The activity under investigation isttiracity lethal dose 50 (LE), acute, oral rat) expressed in mol/kg
body weight and logarithmic form (-loglsh). Is logic to be considered, the minimal value4 Dfo, when they are
given in an interval. The following table shows tlehemical compounds studied and the corresponding
experimental activities -logL§.

O§N+/O

Figure 1: The structural template of nitrobenzene

Table 1: Observed values of investigated nitro-aromatics toxicity [12,13]

N° Compound -logDLs¢ (obs.)
1 Benzene -1,860
2 Toluene -1,780
3 Nitrobenzene -0,690
4 1-Methyl-2-nitrobenzene -0,810
5 1-Methyl-4-nitrobenzene -1,190
6 2-Nitrophenol -0,380
7 3-Nitrophenol -0,370
8 4-Nitrophenol -0,160
9 1-Chloro-2-nitrobenzene -0,230
10 3-Chloronitrobenzene -0,390
11 4-Chloronitrobenzene -0,430
12 3-Nitrobenzoic acid -0,610
13 4-Nitrobenzoic acid -1,070
14 1-Chloromethyl-4-nitrobenzene -1,020
15 1,3-Dimethyl-2-nitrobenzene -1,120
16 1,4-Dimethyl-2-nitrobenzene -1,210
17 1,4-Dichloro-2-nitrobenzene -1,320
18 1,2-Dichloro-4-nitrobenzene -0,520
19 1,3-Dinitrobenzene 0,310
20 2-Methyl-1,3-dinitrobenzene -0,140
21 1-Methyl-2,4-Dinitrobenzene -0,170
22 2,4-Dinitrophenol 0,410
23 1-Fluoro-2,4-dinitrobenzene 0,570
24 1,3,5-Trinitrobenzene -0,110
25 1,2,4-Trichloro-5-nitrobenzene -0,670
26 2-Methyl-4,6-dinitrophenol 0,520
27 2-Methyl-1,3,5-trinitrobenzene -0,490
28 1,2,3,4,5-Pentachloro-6 nitrobenzene -0,570

29
Available online at www.scholarsresearchlibrary.com



T. Laknhlifi etal J. Comput. Methods Moal. Des., 2014, 4 (3):28-37

Calculation of molecular descriptors

DFT (density functional theory) methods were usedhis study. These methods have become very popula
recent years because they can reach similar psacisi other methods in less time and less cost ftoen
computational point of view. In agreement with IET results, energy of the fundamental state adlg-plectronic
system can be expressed through the total electaemsity, and in fact, the use of electronic dgnisistead of
wave function for calculating the energy constisutte fundamental base of DFT [16-18] using the BBL
functional [19,20] and a 6-31G(d) basis set. Th& 83, a version of DFT method, uses Becke’s threeupater
functional (B3) and includes a mixture of HF wittFD exchange terms associated with the gradienectd
correlation functional of Lee, Yang and Parr (LYPhe geometry of all species under investigatios determined
by optimizing all geometrical variables without asymmetry constraints.

The 3D structures of the molecules were generatitlguthe Gauss View 3.0, and then, all calculatiomse
performed using Gaussian 03W program series, Geproptimization of twenty-eight compounds was cadrout
by B3LYP method employing 6-31G (d) basis set.

ChemSketch program (Demo version 10.0) [21] wasleyeg to calculate the others molecular descriptiitaar
Volume MV (cn?), Molecular Weight MW, Molar Refractivity MR (c¥j) Parachor Pc (cfjy Density D (g/cr),
Refractive Index n, Surface Tensigdyne/cm) and Polarizability (cn?) [22].

Statistical analysis

Principal Components Analysis (ACP)

The molecules of benzene, toluene, nitro-aromaditvetives (1 to 28) were studied by statisticathmes based on
the principal component analysis (PCA) [21,22] gdime software XLSTAT 2009.

This is an essentially a descriptive statisticalthnd which aims to present, in graphic form, theximam
information contained in the data table 1.

PCA is a statistical technique useful for summagzall the information encoded in the structuresahpounds. It
is also very helpful for understanding the disttibn of the compounds.

Multiple Linear Regressions (RLM)

The multiple linear regression statistic techniguiesed to study the relation between one dependgeizble and
several independent variables. It is a mathemeadicrtique that minimizes differences between actodlpredicted
values. The multiple linear regression model (MLR?] was generated using the software XLSTAT 20@9,
predict antifungal activities —loglLda It has served also to select the descriptors asetie input parameters for a
back propagation network (ANN).

Artificial Neural Networks (ANNS)
The ANN analysis was performed with the use of N&dtlsoftware v 2008a Neural Fitting tool (nftoaptbox on a
data set of nitrobenzene derivatives herbicideviagi23,24].

A number of individual models of ANN were designiedilt up and trained. Generally the network wadtkfor
three layers; one input layer, one hidden layer @mel output layer were considered [25]. The inpyef consisted
of fifteen artificial neurons of linear activatidonction (Figure 2). The number of artificial neluna the hidden
layer was adjusted experimentally. The hidden laypesisted of 20 artificial neural. One neuron fednthe output
layer of sigmoid function activation. The architget of the applied ANN models is presented in #g8r

bias (f'\)/”

Input Layer Hidden Layer Ourput Layer

Figure 2: Neuron Layout of ANN
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T Nt

Figure 3: The ANN architecture

The data subjected to ANN analysis were randomlddd into three sets: a learning set, a validatenand a
testing set. Prior to that, the whole data setseated within the 0-1 range.

The set of nitro-aromatics derivatives of herbicadivity [26] were subjected to the ANN analydtst, for the
learning set of compounds, i.e., 28 nitro-aromdtcivatives were used. ANN models were designedt and
trained. The learning set of data is used in ANNecognize the relationship between the input amgpus data.
Then for the revision of the ANN model designed aetected, the validation set of four compounds wsed.
Testing set with four compounds was provided tabéndependent evaluation of the ANN model perfarceafor
the finally applied network. In this study, we sg#l the Sigmoid as a basis function [27]. The afp@n of the
output layer is linear, which is given as below:

WS (4 s

Where y is the kth output layer unit for the input veckrw, is the weight connection between the kth outpitt un
and the jth hidden layer unit ang is the bias that allows a transfer function “n@me? given by the following
equation:

Bias=> (y-y) @

where y is the measured value a¥|ds the value predicted by the model.

The accuracy of the model was mainly evaluatedHhey rbot mean square error (RMSE). Formula is giasn
follows:

1 n
RMSE:\/—.Z(pexp—pp,ed)2
n €)

where n = number of compounds,j= experimental value,,pq = predicted value and summation is of overall
patterns in the analyzed data set [28,29]. Th@tscvere run on a personal PC.

RESULTS

This study was carried for a series of 28 our caimpis: benzene, toluene and nitro-aromatic derigatiin order to
determine a quantitative relationship between sirecand toxicity. Table 2 shows the values of ¢héulated
parameters obtained by DFT/B3LYP 6-31G* optimizat@and ACD/ChemSketch program of the studied nitro-
aromatics.

Principal component analyses (PCA)
In this part, PCA was applied to select a trairéegyffrom among 28 compounds studied.

The set of descriptors encoding the 28 nitro-aran@mpounds, electronic, energetic and topologiameters are
submitted to PCA analysis [30]. The first threenpipal axes are sufficient to describe the inforamprovided by

the data matrix. Indeed, the percentages of vagiame 61.95%; 18.49% and 7.15% for the axes FlarelF3,

respectively. The total information is estimatedtpercentage of 87.59%. The principal componeatyais (PCA)

[31] was conducted to identify the link between thifferent variables. Bold values are differentnfrd at a

significance level of p= 0.05. Correlations betweba fifteen descriptors are shown in table 3 aomelation

matrix and in figure 4 these descriptors are represl in a correlation circle.

The Pearson correlation coefficients are summarirethe following table 3. The obtained matrix pides
information on the negative or positive correlatimtween variables.
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Table 1: values of the calculated parameters obta@u by DFT/B3LYP 6-31G* optimization and ACD/ChemSkéch program of the
studied nitro-aromatics

D

N° -lglDsy, MW MR MV Pc n Y A E: Enomo Ewmo AE m Aana
©m  m)  (cm) O & em) @ ) ) () @ebay) ) @m)
1 -1,860 78,112 26,25089,400 207,2001,498 28,800 0,873 10,400 -6324,131 -6,706 0,099 6,8060,0001 7,394 167,680
2 -1,780 92,138 31,070105,700 244,900 1,499 28,800 0,871 12,320 -7394,760 -6,409 0,145 6,5540,3195 7,233 171,400
3 -0,690 193,10932,790 101,200 262,700 1,561 45,300 1,215 13,000 -11892,718 -7,597 -2,431 5,166 4,5800 4,790 258,840
4 -0,810 137,13637,620 117,500 300,400 1,553 42,600 1,166 14,910 -12963,063 -7,060 -1,965 5,096 3,7131 4,762 260,340
5 -1,190 137,13637,620 117,500 300,400 1,553 42,600 1,177 14,910 -12961,480 -7,369 -2,320 5,049 5,2069 4,789 258,920
6 -0,380 139,10934,670 99,700 277,7001,612 60,200 1,395 13,740 -13940,441 -6,666 -1,807 4,858 5,1141 4,809 257,830
7 -0,370 139,10934,670 99,700 277,7001,612 60,200 1,395 13,740 -13940,831 -6,784 -2,398 4,386 5,8264 4,805 258,060
8 -0,160 139,10934,670 99,700 277,7001,612 60,200 1,395 13,740 -13940,916 -6,925 -2,223 4,703 5,3388 4,795 258,560
9 -0,230 157,55437,690 113,200 298,600 1,580 48,300 1,398 14,940 -24407,028 -7,306 -2,132 5,174 4,7097 4,800 258,310
10 -0,390 157,554 37,690 113,200 298,600 1,580 48,300 1,391 14,940 -24407,118 -7,352 -2,202 5,149 3,3962 4,791 258,800
11 -0,430 157,554 37,690 113,200 298,600 1,580 48,300 1,391 14,940 -24407,129 -7,227 -2,184 5,043 2,2289 4,796 258,530
12 -0,610 167,11939,720 113,800 324,800 1,615 66,400 1,468 15,740 -17026,919 -7,887 -2,654 5,234 5,2759 5,031 246,470
13 -1,070 167,11939,720 113,800 324,800 1,615 66,400 1,468 15,740 -17027,464 -7,878 -2,922 4956 3,6701 4,791 258,810
14 -1,020 171,581 42,560 128,900 338,000 1,574 47,100 1,330 16,870 -25478,022 -7,761 -2,684 5,077 3,8672 4,792 258,750
15 -1,120 151,16342,440 133,800 338,000 1,547 40,700 1,129 16,820 -14033,728 -6,958 -1,962 4,996 3,3753 4,735 261,860
16 -1,210 151,16342,440 133,800 338,000 1,547 40,700 1,129 16,820 -14033,894 -6,991 -2,245 4,746 4,5946 4,761 260,410
17 -1,320 192,00042,580 125,100 334,400 1,595 50,900 1,533 16,880 -36921,819 -7,364 -2,739 4,626 3,9591 4,799 258,380
18 -0,520 192,00042,580 125,100 334,400 1,595 50,900 1,533 16,880 -36921,725 -7,359 -2,358 5,002 2,1203 4,792 258,750
19 0,310 168,107 39,340 113,100 318,200 1,612 62,600 1,486 15,590 -17460,273 -7,743 -2,260 5,482 3,8713 3,961 313,030
20 -0,140 182,13444,160 129,300 355,800 1,598 57,200 1,407 17,500 -18531,435 -7,897 -2,852 5,045 2,9266 3,910 317,080
21 -0,170 182,13444,160 129,300 355,300 1,598 57,200 1,407 17,500 -18531,699 -8,119 -2,979 5,140 4,8467 3,905 317,490
22 0,410 184,10641,220 111,500 333,200 1,660 79,600 1,650 16,340 -19300,887 -6,780 -4,146 2,634 6,1586 3,190 388,710
23 0,570 186,097 39,330 117,300 325,300 1,585 59,100 1,586 15,590 -20162,437 -7,760 -2,646 5,114 3,2228 3,914 316,740
24 -0,110 213,10545,880 124,900 373,700 1,655 80,000 1,705 18,190 -23028,484 -8,367 -2,954 5,413 0,0126 3,971 312,230
25 -0,670 226,44547,480 137,100 370,300 1,609 53,200 1,651 18,820 -49436,417 -7,526 -2,903 4,623 2,7867 4,798 258,400
26 0,520 198,13346,050 127,800 370,800 1,639 70,800 1,550 18,250 -20579,728 -7,478 -2,724 4,754 6,7207 3,816 324,940
27 -0,490 227,13150,710 141,200 411,300 1,637 71,900 1,608 20,100 -24099,753 -8,485 -3,481 5,004 1,5349 3,922 316,130
28 -0,570 295,33557,270 161,000 442,100 1,629 56,800 1,834 22,700 -74465,202 -7,612 -2,647 4,964 2,3915 3,908 317,260
Table 3: Correlation matrix (Pearson (n)) between dferent obtained descriptors
-loggLDsy MW MR MV Pc n y D o Er Eromo Eilumo AE n Ea Mmax

-|OgLD5c 1

MW 0,427 1

MR 0,311 0,891 1

MV 0,083 0,774 0944 1

Pc 0,362 0,884 0,994 0,923 1

n 0,724 0,683 0,605 0,314 0,643

y 0,737 0,550 0,483 0,185 0,547 0,959

D 0,673 0,852 0,737 0,503 0,753 0,910 0,812

a 0,311 0,892 1,000 0,944 0,994 0,605 0,483 0,737 1

Er -0,116 -0,810 -0,748 -0,713 -0,688 -0,400 -0,178 -0,684 -0,748 1

Enowmo -0,337 -0,643 -0,605 -0,511 -0,655 -0,495 -0,520 -0,566 -0,605 0,287 1

ELumo -0,607 -0,710 -0,663 -0,473 -0,704 -0,819 -0,777 -0,791 -0,663 0,353 0,596 1

AE -0,500 -0,396 -0,367 -0,202 -0,380 -0,645 -0,573 -0,556 -0,367 0,222 -0,016 0,793 1

u 0,408 -0,001 -0,025 -0,129 -0,005 0,320 0,291 0,147 -0,029%,158 0,141 -0,429-0,642 1

= -0,788 -0,702 -0,676 -0,499 -0,718 -0,795 -0,753 -0,775 -0,676 0,330 0,542 0,902 0,713 -0,432

Mmax 0,801 0,661 0,642 0,456 0,686 0,780 0,774 0,741 0,64228/,-0,478 -0,846 -0,691 0,356 -0,955 1

Correlation circle
The principal component analysis (PCA) was alsofgpered to detect the connection between the differe
variables. The principal component analysis rewkdle correlation circle (Figure 4) shows that ik axis
(61.95% of the variance) appears to represent ¢émsity D, and the F2 axis (18.49% of the variance) seems to
represent the dipole momgnt
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Figure 4: Correlation circle

Analysis of projections according to the planes F2-and F1-F3 (80.44% and 69.10% of the total vaean
respectively) of the studied molecules (Figuressjhiowing in figure 5:

Observations (axes F1et F2: 80,4 %) Observations (axes F1et F3 : 63,10 %)
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Figure 5: Cartesian diagram according to F1-F2 andr1-F3

Multiple linear regressions (MLR)
To establish quantitative relationships betweericityx -logLDsq and selected descriptors, our array data were
subjected to a multiple linear and nonlinear regjees Only variables whose coefficients are sigaifit were

retained.

Multiple linear regression of the variable toxicity (MLR)

Many attempts have been made to develop a rel&ijpngth the indicator variable of toxicity -logldg but the
best relationship obtained by this method is omg oorresponding to the linear combination of sgivéescriptors:
the molecular weighMW, the refractive index, the surface tensiop the densityD, the total energ¥r, the
energyE umo, the dipole moment and the absorption maximukpx.

The resulting equation is:

— logLDsy = — 22.858 + 2.802.18xMW + 10.887n — 7.151.10°Xy + 5.755<D + 6.274.10°XE; +
0.622XE yuo + 6.215.10%X p + 1.091.10%X hpax (Equation 4)
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Figure 6: Graphical representation of calculated ad observed toxicity by MLR

For our 28 compounds, the correlation between éxgertal toxicity and calculated one based on thisleh are
quite significant (Figure 6) as indicated by statéd values:

N=28 R=0961 %+=0.923 RMSE = 0.207
The figure 6 shows a very regular distributionafitity values depending on the experimental values

Multiple nonlinear regression of the variable toxicity (MNLR)

We have used also the technique of nonlinear reigresnodel to improve the structure—toxicity in @agtitative
way. It takes into account several parameters. iBhise most common tool for the study of multidire®nal data.
We have applied it to table 2 containing 28 moleswldssociated with fifteen variables.

The resulting equation is:

—logLDgo = 11635,317 + 7,144 MW — 70,084 XMV — 50,952 ¥Pc — 117352,688 x + 17,878 xy — 2084,566 x
D + 1352,531 xa — 1,396.10%x E; — 271,157 XEnomo + 210,306 XE umo — 21,281 xu + 11793,651 X, +
204,634 Xhmax — 2,399.10°x MW ? + 0,231 xMV ? + 0,113 xPc& + 37295,048 n” — 0,203 xy* + 377,229 »D* —
53,756 xa” + 1,7316.10"x E;* — 12,787 XEnomo” + 29,867 XE umo > — 6,179 XAE? + 3,381 xu® — 626,155 >E,
— 0,186 Xhmax (Equation 5)

The obtained parameters describing the topologictiaa electronic aspects of the studied molecukes a
N=28 R=0.999 R 0.999

The toxicity value — logLEy predicted by this model is somewhat similar ta thiaserved. The figure 7 shows a
very regular distribution of toxicity values basauthe observed values.

With MLNR was obtained significantly better corriden coefficient R = 0, 999. Figure 7 shows a vanjform

distribution of the toxicity observed values depegdon the experimental values and the correlaietween the
experimental results and calculated alter theml-Elgg The residual values tended to zero which is whkydwd not
graph for prediction residuals.
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Figure 7: Graphical representation of calculated and observetbxicity
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Artificial neural networks ANN

In order to increase the probability of good cheeazation of studied compounds, neural networksIf can be
used to generate predictive models of quantitastreicture activity relationships (QSAR) between et of
molecular descriptors obtained from the MLR andeobsd activity. The ANN calculated toxicity modelasv
developed using the properties of several studiechpounds. The correlation between ANN calculated an
experimental toxicity values are very significastidustrated in figure 8 and as indicated by R RAdalues.

The statistic of the three steps of the calculatipithe ANN: training, validation and test are sitated in table 4.

Table 4: Values obtained by ANN

ANN  Samples MSE R R?

Training 20 0.002 0.997 0.994
Validation 4 0.625 0.963 0.926
Test 4 0.092 0.995 0.991

N=28 R=0.997 %R=0.994 RMSE = 0.002
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Figure 8: Graphical representation of calculated ad observed toxicity -logLDsyo

DISCUSSION

Principal component analysis

* The toxicity is well correlated with the maximuoih absorptiori,ax (= 0.801 and p <0.05) and the surface tension
y (r=0.737 and p<0.05) at a significant level.

* The polarizabilityo is positively correlated with the parachor Pc ¢824 and p < 0.05) and the molar volume
MV (r= 0.944 and p <0.05) at a significant level.

* The energy of activation s negatively correlated with the maximum of absiorpi.x (r= 0.995 and p <0.05) at
a significant level.

* The polarizabilitya is strongly correlated with the molar refractividR (r =1 and p< 0.001) at a high level.

Analysis of projections according to the planes F2-and F1-F3 (80.44% and 69.10% of the total vagan
respectively) of the studied molecules (Figure fgves that the molecules are dispersed, accorditigetstructure
of the R group of benzene, in two classes of comgsibelonging to two groups: The group 1 don’t amihg a
nitro group (The low toxicity -logLEB<-1.76) and group 2 containing a nitrogen (belotagsitro group), oxygen
(belongs to nitro group, hydroxyl and carboxyludtine and chlorine atoms promote toxicity incre@gdeglLDsg>-
1.31).

Statistical Analysis

The obtained multiple nonlinear regression corietatoefficient R value is 0.999 for this data seénitrobenzene
derivatives. It confirms that the multiple nonlineagression (MNLR) results were the best to bthlel quantitative
structure activity relationship models.

In this part, we investigated the best linear QSAfression equations established in this studyedas this result,
a comparison of the quality of the CPA, MLR, MNLRdaANN models shows that the MNLR models have
substantially better predictive capability becatts® MNLR approach gives better results than MLR &MhdiN.
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MNLR was able to establish a satisfactory relatigmdetween the molecular descriptors and the iactof the
studied compounds.

We have investigated the QSAR regression to prdtiettoxicity (LD, values) of nitro-aromatic compounds.
Comparison of key statistical terms like R drdt different models obtained by using differenttistical tools and
different descriptors has been shown in table 5.

Table 5: Observed and calculated values of -logldpaccording to different methods

N° Obs (-logLDso) Pred (-logLDsc)
MLR MNLR ANN
1 -1,860 -1,871 -1,860 -2,43
2 -1,780 -1,811 -1,780 -2,51
3 -0,690 -0,719 -0,690 -0,64
4 -0,810 -0,866 -0,810 -0,83
5 -1,190 -0,947 -1,190 -1,13
6 -0,380 -0,063 -0,380 -0,42
7 -0,370 -0,384 -0,370 -0,44
8 -0,160 -0,299 -0,160 -0,24
9 -0,230 -0,370 -0,230 -0,30
10 -0,390 -0,530 -0,390 -0,46
11 -0,430 -0,594 -0,430 -0,25
12 -0,610 -0,809 -0,610 -0,72
13 -1,070 -0,941 -1,070 -1,08
14 -1,020 -1,160 -1,020 -2,12
15 -1,120 -1,039 -1,120 -1,10
16 -1,210 -1,156 -1,210 -1,19
17 -1,320 -0,727 -1,320 -1,38
18 -0,520 -0,601 -0,520 -0,57
19 0,310 0,393 0,310 0,31
20 -0,140 -0,239 -0,140 -0,56
21 -0,170 -0,194 -0,170 -0,93
22 0,410 0,367 0,410 0,42
23 0,570 0,566 0,570 0,56
24 -0,110 -0,026 -0,110 -0,11
25 -0,670 -0,924 -0,670 -0,78
26 0,520 0,376 0,520 0,50
27 -0,490 -0,420 -0,490 -0,50
28 -0,570 -0,511 -0,570 -0,57
CONCLUSION

In this work, the study of the quality of the MLRJNLR and ANN models shows that the MNLR result has
substantially better predictive capability than tther methods. With MNLR approach, we have esthbli a
relationship between several descriptors and tiyxicisatisfactory manners.

We can conclude that one studied descriptors, warehsufficiently rich in chemical, electronic atapological
information to encode the structural feature mayubed with other descriptors for the developmenpreflictive
QSAR models.
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