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ABSTRACT 
 
Quantitative Structure–Activity Relationship (QSAR) model is presented for the estimation of the toxicity of 28 nitro-
aromatic compounds including some well-known explosives. This work was conducted using the principal 
component analysis (PCA) method, the multiple linear regression method (MLR), the multiple non-linear 
regressions (MNLR) and the artificial neural network (ANN). The predicted results of various nitro-aromatic 
compounds afford reliable prediction of LD50 with respect to experimental data. Density functional theory (DFT) 
calculations have been carried out in order to get insights into the structure, chemical reactivity and property 
information for the series of study compounds. This study shows that the MLR and ANN have served also to predict 
activities, but when compared with the results given by the RNLM, we realized that the predictions fulfilled by this 
latter were more effective. 
 
Keywords: Toxicity, nitroaromatic, 3D-QSAR model, DFT study. 
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INTRODUCTION 
 

Nitro-aromatic compounds are relatively rare in nature and have been introduced into the environment mainly by 
human activities; they are widely used in medicine, industry and agriculture. This important class of industrial 
chemicals is widely used in the synthesis of many diverse products, including dyes, polymers, pesticides, and 
explosives. Unfortunately, their extensive use has led to environmental contamination of soil and ground water [1]. 
The nitro group, which provides chemical and functional diversity in these molecules, also contributes to the 
recalcitrance of these compounds to biodegradation. Recalcitrance is further compounded by their acute toxicity, 
mutagenicity, and easy reduction into carcinogenic aromatic amines. Nitro-aromatic compounds are hazardous to 
human health and are registered on the U.S. Environmental Protection Agency's list of priority pollutants for 
environmental remediation. Although the majority of these compounds are synthetic in nature, microorganisms in 
contaminated environments have rapidly adapted to their presence by evolving new biodegradation pathways that 
take advantage of them as sources of carbon, nitrogen, and energy [2,3]. This review provides an overview of the 
synthesis of both man-made and biogenic nitro-aromatic compounds, the bacteria that have been identified to grow 
on and completely mineralize nitro-aromatic compounds, and the pathways that are present in these strains. The 
possible evolutionary origins of the newly evolved pathways are also discussed. 
 
Since its introduction more than forty-five years ago [4], structure-activity relationships have been developed for 
various areas of applications, e.g. estimating of the different substance characteristics as well as their toxicity levels. 
Quantitative structure activity relationships (QSAR) are widely used to predict toxicity from chemical structure and 
corresponding physicochemical properties. The development and application of QSAR techniques started with the 
prediction of toxicity caused by baseline toxicants [5]. The numerous QSAR studies have been carried out in order 
to explain or predict toxic influence of nitro-compounds on different living systems [6,7]. In the recent papers [8,9] 
the QSAR analysis of oral toxicity on rats has been developed on 28 selected nitro-aromatic molecules. In this work 
we describe structure-toxicity relationship for the above compounds using simpler descriptor. Therefore, the aim of 
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the present study is the analysis of possibility of preliminary virtual screening of toxicity of nitro-aromatics by 
QSAR models on the base of their molecular composition, and there are a large number of molecular descriptors that 
can be used in QSAR studies. Once validated, the findings can be used to predict activities of untested compounds. 
In this study, we have modeled the toxicity of several organic compounds based on nitro-aromatic (Figure 1) using 
several statistical tools, principal components analysis (PCA), multiple linear regression (MLR), multiple non-linear 
regression (MNLR) and artificial neural network (ANN) calculations. The objectives of this work are to develop 
predictive QSAR models for the toxicity of our studied molecules. On the other hand, several quantum chemical 
methods and Quantum-chemistry calculations have been performed in order to study the molecular structure and 
electronic properties [10,11]. The geometry as well as the nature of their molecular orbital, HOMO (highest 
occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) are involved in the properties of 
biological activity of organic compounds. The more relevant molecular properties were calculated, these properties 
are the highest occupied molecular orbital energy EHOMO, the lowest unoccupied molecular orbital energy ELUMO , 
energy gap ∆E, dipole moment µ, the total energy ET, the activation energy Ea and the absorption maximum λmax. 
 

MATERIALS AND METHODS 
 

Material 
Previous studies [12] had established a quantitative model of structure activity(QSAR) relationship for series 
molecular structures  approach have been applied to predict the oral rat toxicity of selected nitro-aromatic 
compounds. The activity under investigation is the toxicity lethal dose 50 (LD50, acute, oral rat) expressed in mol/kg 
body weight and logarithmic form (-logLD50). Is logic to be considered, the minimal values of LD50, when they are 
given in an interval. The following table shows the chemical compounds studied and the corresponding 
experimental activities -logLD50. 

N
+ O

-
O

 
Figure 1: The structural template of nitrobenzene 

 
Table 1: Observed values of investigated nitro-aromatics toxicity [12,13] 

 
N° Compound -logDL50 (obs.) 
1 Benzene -1,860 
2 Toluene -1,780 
3 Nitrobenzene -0,690 
4 1-Methyl-2-nitrobenzene -0,810 
5 1-Methyl-4-nitrobenzene -1,190 
6 2-Nitrophenol -0,380 
7 3-Nitrophenol -0,370 
8 4-Nitrophenol -0,160 
9 1-Chloro-2-nitrobenzene -0,230 
10 3-Chloronitrobenzene -0,390 
11 4-Chloronitrobenzene -0,430 
12 3-Nitrobenzoic acid -0,610 
13 4-Nitrobenzoic acid -1,070 
14 1-Chloromethyl-4-nitrobenzene -1,020 
15 1,3-Dimethyl-2-nitrobenzene -1,120 
16 1,4-Dimethyl-2-nitrobenzene -1,210 
17 1,4-Dichloro-2-nitrobenzene -1,320 
18 1,2-Dichloro-4-nitrobenzene -0,520 
19 1,3-Dinitrobenzene 0,310 
20 2-Methyl-1,3-dinitrobenzene -0,140 
21 1-Methyl-2,4-Dinitrobenzene -0,170 
22 2,4-Dinitrophenol 0,410 
23 1-Fluoro-2,4-dinitrobenzene 0,570 
24 1,3,5-Trinitrobenzene -0,110 
25 1,2,4-Trichloro-5-nitrobenzene -0,670 
26 2-Methyl-4,6-dinitrophenol 0,520 
27 2-Methyl-1,3,5-trinitrobenzene -0,490 
28 1,2,3,4,5-Pentachloro-6 nitrobenzene -0,570 
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Calculation of molecular descriptors 
DFT (density functional theory) methods were used in this study. These methods have become very popular in 
recent years because they can reach similar precision to other methods in less time and less cost from the 
computational point of view. In agreement with the DFT results, energy of the fundamental state of a poly-electronic 
system can be expressed through the total electronic density, and in fact, the use of electronic density instead of 
wave function for calculating the energy constitutes the fundamental base of DFT [16-18] using the B3LYP 
functional [19,20] and a 6-31G(d) basis set. The B3LYP, a version of DFT method, uses Becke’s three-parameter 
functional (B3) and includes a mixture of HF with DFT exchange terms associated with the gradient corrected 
correlation functional of Lee, Yang and Parr (LYP). The geometry of all species under investigation was determined 
by optimizing all geometrical variables without any symmetry constraints.  
 
The 3D structures of the molecules were generated using the Gauss View 3.0, and then, all calculations were 
performed using Gaussian 03W program series, Geometry optimization of twenty-eight compounds was carried out 
by B3LYP method employing 6–31G (d) basis set. 
 
ChemSketch program (Demo version 10.0) [21] was employed to calculate the others molecular descriptors, Molar 
Volume MV (cm3), Molecular Weight MW, Molar Refractivity MR (cm3), Parachor Pc (cm3), Density D (g/cm3), 
Refractive Index n, Surface Tension γ(dyne/cm) and Polarizability α (cm3) [22]. 
 
Statistical analysis 
Principal Components Analysis (ACP) 
The molecules of benzene, toluene, nitro-aromatic derivatives (1 to 28) were studied by statistical methods based on 
the principal component analysis (PCA) [21,22] using the software XLSTAT 2009. 
 
This is an essentially a descriptive statistical method which aims to present, in graphic form, the maximum 
information contained in the data table 1. 
 
PCA is a statistical technique useful for summarizing all the information encoded in the structures of compounds. It 
is also very helpful for understanding the distribution of the compounds. 
 
Multiple Linear Regressions (RLM) 
The multiple linear regression statistic technique is used to study the relation between one dependent variable and 
several independent variables. It is a mathematic technique that minimizes differences between actual and predicted 
values. The multiple linear regression model (MLR) [22] was generated using the software XLSTAT 2009, to 
predict antifungal activities –logLD50. It has served also to select the descriptors used as the input parameters for a 
back propagation network (ANN). 
 
Artificial Neural Networks (ANNs) 
The ANN analysis was performed with the use of Mathlab software v 2008a Neural Fitting tool (nftool) toolbox on a 
data set of nitrobenzene derivatives herbicide activity [23,24]. 
 

A number of individual models of ANN were designed built up and trained. Generally the network was built for 
three layers; one input layer, one hidden layer and one output layer were considered [25]. The input layer consisted 
of fifteen artificial neurons of linear activation function (Figure 2). The number of artificial neural in the hidden 
layer was adjusted experimentally. The hidden layer consisted of 20 artificial neural. One neuron formed the output 
layer of sigmoid function activation. The architecture of the applied ANN models is presented in figure 3. 
 

 
 

Figure 2: Neuron Layout of ANN 
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Figure 3: The ANN architecture 
 
The data subjected to ANN analysis were randomly divided into three sets: a learning set, a validation set and a 
testing set. Prior to that, the whole data set was scaled within the 0–1 range. 
 
The set of nitro-aromatics derivatives of herbicide activity [26] were subjected to the ANN analysis. First, for the 
learning set of compounds, i.e., 28 nitro-aromatic derivatives were used. ANN models were designed, built and 
trained. The learning set of data is used in ANN to recognize the relationship between the input and output data. 
Then for the revision of the ANN model designed and selected, the validation set of four compounds was used. 
Testing set with four compounds was provided to be an independent evaluation of the ANN model performance for 
the finally applied network. In this study, we selected the Sigmoid as a basis function [27]. The operation of the 
output layer is linear, which is given as below:   

( ) ( )
1

kn

k kj j k
j

y X w h X b
=

= +∑    (1) 

Where yk is the kth output layer unit for the input vector X, wkj is the weight connection between the kth output unit 
and the jth hidden layer unit and bk is the bias that allows a transfer function “non-zero” given by the following 
equation:     

∑ −=
−

y)y(Bias
                 (2) 

 

where y is the measured value and 

−
y is the value predicted by the model.  

 
The accuracy of the model was mainly evaluated by the root mean square error (RMSE). Formula is given as 
follows: 

∑
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where n = number of compounds, pexp = experimental value, ppred = predicted value and summation is of overall 
patterns in the analyzed data set [28,29]. The scripts were run on a personal PC. 
 

RESULTS 
 

This study was carried for a series of 28 our compounds: benzene, toluene and nitro-aromatic derivatives, in order to 
determine a quantitative relationship between structure and toxicity. Table 2 shows the values of the calculated 
parameters obtained by DFT/B3LYP 6-31G* optimization and ACD/ChemSketch program of the studied nitro-
aromatics.  
 
Principal component analyses (PCA) 
In this part, PCA was applied to select a training set from among 28 compounds studied. 
 
The set of descriptors encoding the 28 nitro-aromatic compounds, electronic, energetic and topologic parameters are 
submitted to PCA analysis [30]. The first three principal axes are sufficient to describe the information provided by 
the data matrix. Indeed, the percentages of variance are 61.95%; 18.49% and 7.15% for the axes F1, F2 and F3, 
respectively. The total information is estimated to a percentage of 87.59%. The principal component analysis (PCA) 
[31] was conducted to identify the link between the different variables. Bold values are different from 0 at a 
significance level of p= 0.05. Correlations between the fifteen descriptors are shown in table 3 as a correlation 
matrix and in figure 4 these descriptors are represented in a correlation circle. 
 
The Pearson correlation coefficients are summarized in the following table 3. The obtained matrix provides 
information on the negative or positive correlation between variables. 
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Table 1: values of the calculated parameters obtained by DFT/B3LYP 6-31G* optimization and ACD/ChemSketch program of the 
studied nitro-aromatics 

 

N° 
 

-lgLD 50 

 
MW 

 
MR 

(cm3) 
MV 

(cm3) 
Pc 

(cm3) 
n 
 

γ 
(dyne/ 
cm) 

D 
(g/ 

cm3) 

Α 
(cm3) 

ET 

(ua) 
EHOMO 

(ev) 
ELUMO 

(ev) 
∆E 
(ev) 

µ 
(Debay) Ea (ev) λmax 

(nm) 

1 -1,860 78,112 26,250 89,400 207,200 1,498 28,800 0,873 10,400 -6324,131 -6,706 0,099 6,806 0,0001 7,394 167,680 
2 -1,780 92,138 31,070 105,700 244,900 1,499 28,800 0,871 12,320 -7394,760 -6,409 0,145 6,554 0,3195 7,233 171,400 
3 -0,690 193,109 32,790 101,200 262,700 1,561 45,300 1,215 13,000 -11892,718 -7,597 -2,431 5,166 4,5800 4,790 258,840 
4 -0,810 137,136 37,620 117,500 300,400 1,553 42,600 1,166 14,910 -12963,063 -7,060 -1,965 5,096 3,7131 4,762 260,340 
5 -1,190 137,136 37,620 117,500 300,400 1,553 42,600 1,177 14,910 -12961,480 -7,369 -2,320 5,049 5,2069 4,789 258,920 
6 -0,380 139,109 34,670 99,700 277,700 1,612 60,200 1,395 13,740 -13940,441 -6,666 -1,807 4,858 5,1141 4,809 257,830 
7 -0,370 139,109 34,670 99,700 277,700 1,612 60,200 1,395 13,740 -13940,831 -6,784 -2,398 4,386 5,8264 4,805 258,060 
8 -0,160 139,109 34,670 99,700 277,700 1,612 60,200 1,395 13,740 -13940,916 -6,925 -2,223 4,703 5,3388 4,795 258,560 
9 -0,230 157,554 37,690 113,200 298,600 1,580 48,300 1,398 14,940 -24407,028 -7,306 -2,132 5,174 4,7097 4,800 258,310 
10 -0,390 157,554 37,690 113,200 298,600 1,580 48,300 1,391 14,940 -24407,118 -7,352 -2,202 5,149 3,3962 4,791 258,800 
11 -0,430 157,554 37,690 113,200 298,600 1,580 48,300 1,391 14,940 -24407,129 -7,227 -2,184 5,043 2,2289 4,796 258,530 
12 -0,610 167,119 39,720 113,800 324,800 1,615 66,400 1,468 15,740 -17026,919 -7,887 -2,654 5,234 5,2759 5,031 246,470 
13 -1,070 167,119 39,720 113,800 324,800 1,615 66,400 1,468 15,740 -17027,464 -7,878 -2,922 4,956 3,6701 4,791 258,810 
14 -1,020 171,581 42,560 128,900 338,000 1,574 47,100 1,330 16,870 -25478,022 -7,761 -2,684 5,077 3,8672 4,792 258,750 
15 -1,120 151,163 42,440 133,800 338,000 1,547 40,700 1,129 16,820 -14033,728 -6,958 -1,962 4,996 3,3753 4,735 261,860 
16 -1,210 151,163 42,440 133,800 338,000 1,547 40,700 1,129 16,820 -14033,894 -6,991 -2,245 4,746 4,5946 4,761 260,410 
17 -1,320 192,000 42,580 125,100 334,400 1,595 50,900 1,533 16,880 -36921,819 -7,364 -2,739 4,626 3,9591 4,799 258,380 
18 -0,520 192,000 42,580 125,100 334,400 1,595 50,900 1,533 16,880 -36921,725 -7,359 -2,358 5,002 2,1203 4,792 258,750 
19 0,310 168,107 39,340 113,100 318,200 1,612 62,600 1,486 15,590 -17460,273 -7,743 -2,260 5,482 3,8713 3,961 313,030 
20 -0,140 182,134 44,160 129,300 355,800 1,598 57,200 1,407 17,500 -18531,435 -7,897 -2,852 5,045 2,9266 3,910 317,080 
21 -0,170 182,134 44,160 129,300 355,300 1,598 57,200 1,407 17,500 -18531,699 -8,119 -2,979 5,140 4,8467 3,905 317,490 
22 0,410 184,106 41,220 111,500 333,200 1,660 79,600 1,650 16,340 -19300,887 -6,780 -4,146 2,634 6,1586 3,190 388,710 
23 0,570 186,097 39,330 117,300 325,300 1,585 59,100 1,586 15,590 -20162,437 -7,760 -2,646 5,114 3,2228 3,914 316,740 
24 -0,110 213,105 45,880 124,900 373,700 1,655 80,000 1,705 18,190 -23028,484 -8,367 -2,954 5,413 0,0126 3,971 312,230 
25 -0,670 226,445 47,480 137,100 370,300 1,609 53,200 1,651 18,820 -49436,417 -7,526 -2,903 4,623 2,7867 4,798 258,400 
26 0,520 198,133 46,050 127,800 370,800 1,639 70,800 1,550 18,250 -20579,728 -7,478 -2,724 4,754 6,7207 3,816 324,940 
27 -0,490 227,131 50,710 141,200 411,300 1,637 71,900 1,608 20,100 -24099,753 -8,485 -3,481 5,004 1,5349 3,922 316,130 
28 -0,570 295,335 57,270 161,000 442,100 1,629 56,800 1,834 22,700 -74465,202 -7,612 -2,647 4,964 2,3915 3,908 317,260 

 
Table 3: Correlation matrix (Pearson (n)) between different obtained descriptors 

 

 
Correlation circle 
The principal component analysis (PCA) was also performed to detect the connection between the different 
variables. The principal component analysis revealed the correlation circle (Figure 4) shows that the F1 axis 
(61.95% of the variance) appears to represent the density D, and the F2 axis (18.49% of the variance) seems to 
represent the dipole moment µ.  

 -loqgLD50 MW MR MV Pc n γ D α ET EHOMO  ELUMO  ∆E µ Ea λmax 
-logLD50 1              
MW 0,427 1  
MR 0,311 0,891 1              
MV 0,083 0,774 0,944 1             
Pc 0,362 0,884 0,994 0,923 1            
n 0,724 0,683 0,605 0,314 0,643 1           
γ 0,737 0,550 0,483 0,185 0,547 0,959 1          
D 0,673 0,852 0,737 0,503 0,753 0,910 0,812 1         
α 0,311 0,892 1,000 0,944 0,994 0,605 0,483 0,737 1        
ET -0,116 -0,810 -0,748 -0,713 -0,688 -0,400 -0,178 -0,684 -0,748 1       
EHOMO  -0,337 -0,643 -0,605 -0,511 -0,655 -0,495 -0,520 -0,566 -0,605 0,287 1      
ELUMO  -0,607 -0,710 -0,663 -0,473 -0,704 -0,819 -0,777 -0,791 -0,663 0,353 0,596 1     
∆E -0,500 -0,396 -0,367 -0,202 -0,380 -0,645 -0,573 -0,556 -0,367 0,222 -0,016 0,793 1    
µ 0,408 -0,001 -0,025 -0,129 -0,005 0,320 0,291 0,147 -0,025 0,158 0,141 -0,429 -0,642 1   
Ea -0,788 -0,702 -0,676 -0,499 -0,718 -0,795 -0,753 -0,775 -0,676 0,330 0,542 0,902 0,713 -0,439 1  
λmax 0,801 0,661 0,642 0,456 0,686 0,780 0,774 0,741 0,642 -0,287 -0,478 -0,846 -0,691 0,356 -0,955 1 
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Figure 4: Correlation circle 
 
Analysis of projections according to the planes F1–F2 and F1-F3 (80.44% and 69.10% of the total variance 
respectively) of the studied molecules (Figure 5) is showing in figure 5: 
 

      
 

Figure 5: Cartesian diagram according to F1-F2 and F1-F3 
 
Multiple linear regressions (MLR) 
To establish quantitative relationships between toxicity -logLD50 and selected descriptors, our array data were 
subjected to a multiple linear and nonlinear regression. Only variables whose coefficients are significant were 
retained.  
 
Multiple linear regression of the variable toxicity (MLR) 
Many attempts have been made to develop a relationship with the indicator variable of toxicity -logLD50, but the 
best relationship obtained by this method is only one corresponding to the linear combination of several descriptors: 
the molecular weight MW , the refractive index n, the surface tension γ, the density D, the total energy ET, the 
energy ELUMO , the dipole moment µ and the absorption maximum λmax. 
 
The resulting equation is:  
 
– logLD50 = – 22.858 + 2.802.10-03× MW  + 10.887× n – 7.151.10-02× γ + 5.755× D + 6.274.10-05× ET + 
0.622× ELUMO + 6.215.10-02× µ + 1.091.10-02× λmax                         (Equation 4) 
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Figure 6: Graphical representation of calculated and observed toxicity by MLR 

 
For our 28 compounds, the correlation between experimental toxicity and calculated one based on this model are 
quite significant (Figure 6) as indicated by statistical values:  
 

N = 28      R = 0.961      R2 = 0.923       RMSE = 0.207 
 

The figure 6 shows a very regular distribution of toxicity values depending on the experimental values. 
 
Multiple nonlinear regression of the variable toxicity (MNLR) 
We have used also the technique of nonlinear regression model to improve the structure–toxicity in a quantitative 
way. It takes into account several parameters. This is the most common tool for the study of multidimensional data. 
We have applied it to table 2 containing 28 molecules associated with fifteen variables. 
 
The resulting equation is: 
 
– logLD50 = 11635,317 + 7,144 x MW  – 70,084 x MV  – 50,952 x Pc – 117352,688 x n + 17,878 x γ – 2084,566 x 
D + 1352,531 x α – 1,396.10-02 x ET – 271,157 x EHOMO  + 210,306 x ELUMO  – 21,281 x µ + 11793,651 x Ea + 
204,634 x λmax – 2,399.10-02 x MW 2 + 0,231 x MV 2 + 0,113 x Pc2 + 37295,048 x n2 – 0,203 x γ2 + 377,229 x D2 – 
53,756 x α2 + 1,7316.10-07 x ET

2 – 12,787 x EHOMO
2 + 29,867 x ELUMO

2 – 6,179 x ∆E2 + 3,381 x µ2 – 626,155 x Ea
2 

– 0,186 x λmax
2                                                                   (Equation 5) 

 
The obtained parameters describing the topologic and the electronic aspects of the studied molecules are: 
 

N = 28       R = 0.999       R2 = 0.999  
 
The toxicity value – logLD50 predicted by this model is somewhat similar to that observed. The figure 7 shows a 
very regular distribution of toxicity values based on the observed values. 
 
With MLNR was obtained significantly better correlation coefficient R = 0, 999. Figure 7 shows a very uniform 
distribution of the toxicity observed values depending on the experimental values and the correlation between the 
experimental results and calculated alter them –logLD50. The residual values tended to zero which is why we did not 
graph for prediction residuals. 

 
Figure 7: Graphical representation of calculated and observed toxicity 
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Artificial neural networks ANN  
In order to increase the probability of good characterization of studied compounds, neural networks (ANN) can be 
used to generate predictive models of quantitative structure activity relationships (QSAR) between a set of 
molecular descriptors obtained from the MLR and observed activity. The ANN calculated toxicity model was 
developed using the properties of several studied compounds. The correlation between ANN calculated and 
experimental toxicity values are very significant as illustrated in figure 8 and as indicated by R and R2 values. 
 
The statistic of the three steps of the calculation by the ANN: training, validation and test are illustrated in table 4. 
 

Table 4: Values obtained by ANN 
 

ANN Samples MSE R R2 
Training 20 0.002 0.997 0.994 
Validation 4 0.625 0.963 0.926 
Test 4 0.092 0.995 0.991 

 
N = 28      R = 0.997      R2 = 0.994       RMSE = 0.002 

 
Figure 8: Graphical representation of calculated and observed toxicity -logLD50 

 
DISCUSSION 

 
Principal component analysis  
* The toxicity is well correlated with the maximum of absorption λmax (r= 0.801 and p <0.05) and the surface tension 
γ (r=0.737 and p<0.05) at a significant level. 
* The polarizability α is positively correlated with the parachor Pc (r =0.994 and p < 0.05) and the molar volume 
MV (r= 0.944 and p <0.05) at a significant level. 
 
* The energy of activation Ea is negatively correlated with the maximum of absorption λmax (r= 0.995 and p <0.05) at 
a significant level. 
 
* The polarizability α is strongly correlated with the molar refractivity MR (r =1 and p< 0.001) at a high level. 
 
Analysis of projections according to the planes F1–F2 and F1-F3 (80.44% and 69.10% of the total variance 
respectively) of the studied molecules (Figure 5) shows that the molecules are dispersed, according to the structure 
of the R group of benzene, in two classes of compounds belonging to two groups: The group 1 don’t containing a 
nitro group (The low toxicity -logLD50<-1.76) and group 2 containing a nitrogen (belongs to nitro group), oxygen 
(belongs to nitro group, hydroxyl and carboxyl), fluorine and chlorine atoms promote toxicity increase (–logLD50>-
1.31).  
 
Statistical Analysis  
The obtained multiple nonlinear regression correlation coefficient R value is 0.999 for this data set of nitrobenzene 
derivatives. It confirms that the multiple nonlinear regression (MNLR) results were the best to build the quantitative 
structure activity relationship models. 
 
In this part, we investigated the best linear QSAR regression equations established in this study. Based on this result, 
a comparison of the quality of the CPA, MLR, MNLR and ANN models shows that the MNLR models have 
substantially better predictive capability because the MNLR approach gives better results than MLR and ANN. 
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MNLR was able to establish a satisfactory relationship between the molecular descriptors and the activity of the 
studied compounds. 
 
We have investigated the QSAR regression to predict the toxicity (LD50 values) of nitro-aromatic compounds. 
Comparison of key statistical terms like R or R2 of different models obtained by using different statistical tools and 
different descriptors has been shown in table 5. 
 

Table 5: Observed and calculated values of -logLD50 according to different methods 
 

N° 
 

Obs (-logLD50) 
 

Pred (-logLD50) 
MLR MNLR ANN 

1 -1,860 -1,871 -1,860 -2,43 
2 -1,780 -1,811 -1,780 -2,51 
3 -0,690 -0,719 -0,690 -0,64 
4 -0,810 -0,866 -0,810 -0,83 
5 -1,190 -0,947 -1,190 -1,13 
6 -0,380 -0,063 -0,380 -0,42 
7 -0,370 -0,384 -0,370 -0,44 
8 -0,160 -0,299 -0,160 -0,24 
9 -0,230 -0,370 -0,230 -0,30 
10 -0,390 -0,530 -0,390 -0,46 
11 -0,430 -0,594 -0,430 -0,25 
12 -0,610 -0,809 -0,610 -0,72 
13 -1,070 -0,941 -1,070 -1,08 
14 -1,020 -1,160 -1,020 -2,12 
15 -1,120 -1,039 -1,120 -1,10 
16 -1,210 -1,156 -1,210 -1,19 
17 -1,320 -0,727 -1,320 -1,38 
18 -0,520 -0,601 -0,520 -0,57 
19 0,310 0,393 0,310 0,31 
20 -0,140 -0,239 -0,140 -0,56 
21 -0,170 -0,194 -0,170 -0,93 
22 0,410 0,367 0,410 0,42 
23 0,570 0,566 0,570 0,56 
24 -0,110 -0,026 -0,110 -0,11 
25 -0,670 -0,924 -0,670 -0,78 
26 0,520 0,376 0,520 0,50 
27 -0,490 -0,420 -0,490 -0,50 
28 -0,570 -0,511 -0,570 -0,57 

 
CONCLUSION 

 
In this work, the study of the quality of the MLR, MNLR and ANN models shows that the MNLR result has 
substantially better predictive capability than the other methods. With MNLR approach, we have established a 
relationship between several descriptors and toxicity in satisfactory manners. 
 
We can conclude that one studied descriptors, which are sufficiently rich in chemical, electronic and topological 
information to encode the structural feature may be used with other descriptors for the development of predictive 
QSAR models. 
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