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ABSTRACT 
 
To establish a quantitative structure-activity relationship for antibacterial activity against Staphylococcus aureus 
and Bacillus subtilis, a series of seventeen 1,3-disubstituted-1H-naphtho[1,2-e][1,3]oxazine derivatives molecules 
was submitted to a principal components analysis (PCA), to a multiple regression analysis (MRA), to a regression 
partial least squares (PLS), to a non-linear regression (RNLM) and to an artificial neural network (ANN). We 
accordingly propose a quantitative model, and we interpret the activity of the compounds relying on the multivariate 
statistical analysis. Density functional theory (DFT) and ab-initio molecular orbital calculations have been carried 
out in order to get insights into the structure, chemical reactivity and property information for the series of study 
compounds. The topological descriptors were computed with ACD/ChemSketch and Gaussian 03W program, 
respectively. This study shows that the MRA, PLS, and ANN have served also to predict activities, but when 
compared with the results given by the RNLM, we realized that the predictions fulfilled by this latter were more 
effective.  
 
Keywords: QSAR, DFT, 1,3-disubstituted-1H-naphtho[1,2-e][1,3]oxazine, Staphylococcus aureus, Bacillus subtilis. 
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INTRODUCTION 
 

The development of simple synthetic routes to widely used organic compounds using readily available reagents is 
one of the main objectives of organic synthesis. Nitrogen heterocycles are of special interest because they constitute 
an important class of natural and non-natural products, many of which exhibit useful biological activities. 
Investigation of the 1,3-oxazine heterocycles has shown that they possess varied biological properties such as 
analgesic, anticonvulsant, antitubercular, antibacterial and anticancer activity. Particular attention has been paid to 
these compounds since the discovery of the non-nucleoside reverse transcriptase inhibitor trifluoromethyl-1,3-
oxazine-2-one, which shows high activity against a variety of HIV-1 mutant strains. In addition, naphthoxazine 
derivatives have exhibited therapeutic potential for the treatment of Parkinson’s disease [1]. 
 
Several lipopeptides have potent antibiotic activity and have been the subject of several studies on the discovery of 
new antibiotics. The list includes surfactin, produced by B.subtilis, the most powerful biosurfactant known to date. 
These compounds have many pharmacologicalactivities: antibacterial, antifungal, antiviral, and antimycoplasma 
properties; inhibition of the fibrin clot formation and hemolysis; formation of ion channels in lipid bilayer 
membranes; antitumor activity against Ehrlich’s ascites carcinoma cells; and inhibition of the cyclic adenosine 3,5-
monophosphate phosphodiesterase[2,3]. 
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Quantitative Structure-Property/Activity Relationship (QSPR/QSAR) methods are among the most practical tools in 
computational physical chemistry. These methods are based on the axiom that the variance in the physicochemical 
properties and activities of chemical compounds is determined by the variance in their molecular structures. Thus, if 
experimental data are available for only some chemicals in a group, one can predict the missing from molecular 
descriptors calculated for the whole group and suitable mathematical model [4]. The global prediction of toxicity 
using QSAR has been the goal of many workers who utilized a variety of approaches. This goal is alluring, but has 
yet to be achieved satisfactorily. There are a number of reasons for the absence of success [5]. The deficiency of 
available toxicity data has clearly held back progress. This lack of success has been compounded in many studies by 
a poor appreciation of the insufficient heterogeneity, or chemical diversity, in the dataset. Further, while some 
molecular properties (such as hydrophobicity) are well described, others, including electrophilic reactivity, 
ionization, and hydrogen bonding, are poorly parameterized. Last, mechanisms of toxic action are not fully 
understood or misinterpreted, or their relevance in the modelling of toxicity is ignored [6]. 
 
We hereby report QSAR studies of 1,3-disubstituted-1H-naphtho[1,2-e][1,3]oxazines synthesized in recent study 
[3]. To the best of our knowledge, this is the first report on the correlation of molecular descriptors with the 
antimicrobial activity of 1,3-disubstituted-1H-naphtho[1,2-e][1,3]oxazines. 
 

MATERIALS  AND METHODS 
 

Experimental data 
Antecedent studies [3] had established a quantitative model of molecular-structure and antibacterial activitiespMICsa 
and pMICbs of 1,3-disubstituted-1H-naphtho[1,2-e][1,3]oxazines.The following figure shows the chemicals 
structures of studied compounds optimized. 
 

 
Figure 1: Chemical structures of 1,3-disubstituted-1H-naphtho[1,2-e][1,3]oxazines 

 
The experimental pMICsa and pMICbsof the studied compounds have been collected from recent work [3] (Table1). 
The range of the IC 50 data varies from 1.430 to 2.100 (µM). 
 

Table 1: Molecular structures of 1,3-disubstituted-1H-naphtho[1,2-e][1,3]oxazines used in QSAR studies 
 

Compound R1 R2 pMIC sa pMIC bs 
1 H H 1.4300 2.0300 
2 CH3 CH3 1.4600 2.0700 
3 OCH3 OCH3 1.5000 2.1000 
4 Cl Cl 1.5100 1.8100 
5 F F 2.0700 1.7700 
6 H OCH3 1.7700 1.7700 
7 H CH3 1.7500 1.4500 
8 H NO2 1.7800 1.7800 
9 H F 1.7700 1.7700 
10 H Br 1.7500 2.0500 
11 CH3 H 1.5200 1.8200 
12 CH3 OCH3 1.4500 1.7500 
13 CH3 NO2 1.7800 1.7800 
14 CH3 H 1.8000 1.8000 
15 CH3 F 1.4900 1.7900 
16 CH3 Br 1.4700 2.0700 
17 H Cl 1.8300 1.8300 

 
Computational methods 
An attempt has been made to correlate the activity of these compounds with various physicochemical parameters. 
 
DFT (density functional theory) methods were used in this study. These methods have become very popular in 
recent years because they can reach similar precision to other methods in less time and less cost from the 
computational point of view. In agreement with the DFT results, energy of the fundamental state of a polyelectronic 
system can be expressed through the total electronic density, and in fact, the use of electronic density instead of 
wave function for calculating the energy constitutes the fundamental base of DFT [7-9] using the B3LYP functional 
[10,11] and a 6-31G (d) basis set. The B3LYP, a version of DFT method, uses Becke’s three-parameter functional 
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(B3) and includes a mixture of HF with DFT exchange terms associated with the gradient corrected correlation 
functional of Lee, Yang and Parr (LYP). The geometry of all species under investigation was determined by 
optimizing all geometrical variables without any symmetry constraints.  
 
The 3D structures of the molecules were generated using the Gauss View 3.0, and then, all calculations were 
performed using Gaussian 03W program series, Geometry optimization of thirteen compounds was carried out by 
B3LYP method employing 6–31G(d) basis set. ChemSketch program (Demo version 10.0) [12] was employed to 
calculate the others molecular descriptors. 
 
Calculation of molecular descriptors 
Calculation of descriptors using Gaussian 03W 
Several quantum chemical methods and quantum-chemistry calculations have been performed in order to study the 
molecular structure and electronic properties [13-20], from the results of the DFT calculations, the quantum 
chemistry descriptors were obtained for the model building as follows: the total energy (ET (u.a)), the highest 
occupied molecular orbital energy (EHOMO (eV)), the lowest unoccupied molecular orbital energy (ELUMO (eV)), the 
energy difference between the LUMO and the HOMO energy (Gap (eV)), the total dipole moment of the molecule 
(µ(Debye)), absolute hardness (η), absolute electron negativity (χ), reactivity index (ω),total energy ET, activation 
energy Ea, absorption maximum λmax and factor of oscillation f(SO) [21]. 
 
η,χ andω were determined by the following equations: 
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Calculation of descriptors using ACD/ChemSketch 
Advanced chemistry development's ACD/ChemSketch program [12] was used to calculate Formula Weight (PM), 
Molar Volume (MV (cm3)), Molecular Weight (MW), Molar Refractivity (MR (cm3)), Parachor (Pc (cm3)), Density 
(D (g/cm3)), Refractive Index (n), Surface Tension (γ(dyne/cm),Polarizability (αe (cm3)) and octanol/water partition 
coefficientsLogP. 
 
• Molecular Weight(M):  Used as the descriptor in systems such as transport studies where diffusion is the mode of 
operation. It is an important variable in QSAR studies pertaining to cross resistance of various drugs in multi-drug 
resistant cell lines. 
 
• Molar Volume (Vm): The molar volume calculates from additive increments. The additive atomic increments 
were obtained using a database of density and calculated M: 
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M
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• Density(d):The density is calculates from M and the calculated molar volume:  
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• Molar Refractivity (A): The Lorentz-Lorenz equation relates Molecular weight, density, and refractive index: 
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• Parachor(P): The parachor is calculates from additive increments.  The additive atomic increments were obtained 
using a database of density, surface tension, and calculated MW: 
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• Refractive Index (n):  By the Lorentz-Lorenz equation: 
 

A  Vm

M A  2
 n 

-

+=
 

 
The refractive index calculates from the molar volume and molar refractivity, both of which are calculated as above. 
 
• Surface Tension (S): Calculated from calculated Vm and calculated Pc: 
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• Polarizability(αe):Calculates from the Molar Refractivity as follows:  
 

A  x  0,3964308    αe =  
 

• Partition coefficients LogP:The partition coefficient is a ratio of concentrations of un-ionized compound between 
the two solutionsoctanol/water: 
 

Log� = Log ���	
������������	
�������� � 

Statistical analysis 
To explain the structure-activity relationship, these 20 descriptors are calculated for 17 molecules using the 
Gaussian 03W, Gauss View and ChemSketch software. 
 
The study we conducted consists of: 
• The principal component analysis (PCA) available in a software called XLSTAT. 
• The multiple linear regressions (MLR) available in the XLSTAT software. 
• The regression partial least squares (PLS) available in the XLSTAT software. 
• The non-linear regression (RNLM) available in XLSTAT software. 
• The Neural Network (RN) available in the software MATLAB Version 9. 
 
The structures of the molecules based on 1,3-disubstituted-1H-naphtho[1,2-e][1,3]oxazines, (1–17) were studied by 
statistical methods based on the principal component analysis (PCA)using the software XLSTAT version Demo 
2009 [22]. PCA is a statistical technique useful for summarizing all the information encoded in the structures of the 
compounds. It is also very helpful for understanding the distribution of the compounds [23]. This is an essentially 
descriptive statistical method which aims to present, in graphic form, the maximum of information contained in the 
data table 1 and table 2. 
 
The multiple linear regression (MLR) analysis with descendent selection and elimination of variables was employed 
to model the structure activity relationships. It is a mathematic technique that minimizes differences between actual 
and predicted values. It has served also to select the descriptors used as the input parameters in the partial least 
squares (PLS), and the Multiples nonlinear regression (MNLR) and artificial neural network (ANN). 
 
The (MLR), the (PLS), and the (MNLR) were generated using the software XLSTAT version Demo 2009 [12], to 
predict cytotoxic effects IC50 activities. Equations were justified by the correlation coefficient (R), mean squared 
error (MSE), fishers F-statistic (F), and significance level (F value). 
 
ANN is artificial systems simulating the function of the human brain. Three components constitute a neural network: 
the processing elements or nodes, the topology of the connections between the nodes, and the learning rule by which 
new information is encoded in the network. While there are a number of different ANN models, the most frequently 
used type of ANN in QSAR is the three-layered feed-forward network [17]. In this type of networks, the neurons are 
arranged in layers (an input layer, one hidden layer and an output layer). Each neuron in any layer is fully connected 
with the neurons of a succeeding layer and no connections are between neurons belonging to the same layer. 
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Table 2: The values of the sixteen chemical descriptors 
 

N° Et(eV) EHOMO (eV) ELUMO (eV) ∆E(eV) Μ Ea(eV) λmax(nm) f (SO)  χ η ω A Vm P n S d αe M Log P 
1 -28700.5883 -5.7555 -1.2353 4.5201 1.0021 3.9741 311.9800 0.0137 3.4954 2.2601 2.7030 104.8500 287.4000 745.9000 1.6500 45.3000 1.1800 41.5600 339.1623 5.2400 
2 -30840.2875 -5.6964 -1.1630 4.5335 0.7204 3.9962 310.2500 0.0138 3.4297 2.2667 2.5946 113.6900 317.8000 808.1000 1.6340 41.8000 1.1500 45.0700 367.1936 6.4200 
3 -34932.9463 -5.6393 -1.0819 4.5574 0.7057 4.0120 309.0300 0.0061 3.3606 2.2787 2.4780 116.4700 330.7000 846.4000 1.6220 42.9000 1.2000 46.1700 399.1834 4.0400 
4 -53711.8108 -5.9772 -1.5208 4.4565 3.4095 3.8964 318.2000 0.0133 3.7490 2.2282 3.1538 114.0500 306.0000 803.6000 1.6680 47.5000 1.3300 45.2100 407.0844 5.9600 
5 -34100.8808 -5.8861 -1.3458 4.5403 2.5407 4.0029 309.7400 0.0147 3.6159 2.2701 2.8798 104.5900 293.1000 746.2000 1.6320 41.9000 1.2800 41.4600 375.1435 5.4400 
6 -31816.7836 -5.6940 -1.1322 4.5618 2.0953 4.0373 307.1000 0.0170 3.4131 2.2809 2.5537 110.6600 309.0000 796.2000 1.6340 44.0000 1.1900 43.8700 369.1729 4.7800 
7 -29770.4420 -5.7228 -1.1896 4.5332 0.7747 3.9954 310.3200 0.0143 3.4562 2.2666 2.6351 109.2700 302.6000 777.0000 1.6410 43.4000 1.1600 43.3200 353.1780 5.8300 
8 -34265.0578 -6.0191 -2.5898 3.4293 6.3936 3.0159 411.1000 0.0055 4.3045 1.7146 5.4031 110.5100 292.7000 791.4000 1.6790 53.4000 1.3100 43.8100 384.1474 4.3400 
9 -41206.2009 -5.8567 -1.4051 4.4516 2.9244 3.8914 318.6100 0.0130 3.6309 2.2258 2.9615 109.4500 296.7000 774.7000 1.6590 46.4000 1.2500 43.3900 373.1233 5.7700 
10 -31400.7413 -5.8110 -1.2805 4.5305 2.1922 3.9889 310.8200 0.0139 3.5457 2.2652 2.7750 104.7200 290.3000 746.1000 1.6400 43.6000 1.2300 41.5100 357.1529 5.5100 
11 -98660.3526 -5.8559 -1.4114 4.4445 2.8136 3.8838 319.2400 0.0134 3.6336 2.2222 2.9707 112.4000 299.9000 789.4000 1.6720 47.9000 1.3900 44.5600 417.0728 5.9400 
12 -42276.0491 -5.8292 -1.3779 4.4513 3.0472 3.8918 318.5800 0.0126 3.6036 2.2256 2.9173 109.2700 302.6000 777.0000 1.6410 43.4000 1.1600 43.3200 353.1780 5.8300 
13 -32886.6291 -5.6670 -1.1069 4.5601 1.9084 4.0347 307.2900 0.0160 3.3870 2.2801 2.5156 115.0800 324.2000 827.2000 1.6280 42.3000 1.1800 45.6200 383.1885 5.3700 
14 -35334.9087 -5.9911 -2.5722 3.4189 6.5390 3.0060 412.4500 0.0056 4.2816 1.7095 5.3620 114.9300 307.8000 822.4000 1.6690 50.9000 1.2900 45.5600 398.1630 4.9300 
15 -29770.4338 -5.7277 -1.2089 4.5188 1.0468 3.9735 312.0300 0.0132 3.4683 2.2594 2.6621 109.2700 302.6000 777.0000 1.6410 43.4000 1.1600 43.3200 353.1780 5.8300 
16 -32470.5855 -5.7838 -1.2530 4.5307 2.2970 3.9900 310.7400 0.0134 3.5184 2.2654 2.7322 109.1400 305.5000 777.2000 1.6330 41.8000 1.2100 43.2600 371.1685 6.1000 
17 -99730.2008 -5.8281 -1.3847 4.4434 2.9359 3.8832 319.2800 0.0129 3.6064 2.2217 2.9271 116.8300 315.1000 820.5000 1.6630 45.9000 1.3700 46.3100 431.0885 6.5300 

 
Table3:The correlation matrix (Pearson (n)) between different obtained descriptors 

 
Variables Et EHOMO  ELUMO  ∆E µ Ea λmax f (SO)  χ η ω A Vm P n S d αe M Log P pMICsa pMICbs 
Et(eV) 1 0,250 0,028 -0,044 -0,166 -0,010 0,037 -0,040 -0,075 -0,044 0,011 -0,420 -0,092 -0,240 -0,522 -0,280 -0,775 -0,420 -0,768 -0,416 -0,015 0,094 
EHOMO  1 0,823 0,708 -0,874 0,730 -0,713 0,435 -0,884 0,708 -0,788 0,058 0,507 0,152 -0,817 -0,785 -0,698 0,058 -0,347 0,021 -0,288 0,224 
ELUMO  1 0,984 -0,939 0,988 -0,985 0,729 -0,993 0,984 -0,998 -0,141 0,270 -0,134 -0,731 -0,885 -0,475 -0,141 -0,281 0,348 -0,277 0,184 
∆E(eV) 1 -0,892 0,999 -1,000 0,769 -0,956 1,000 -0,992 -0,193 0,176 -0,214 -0,651 -0,853 -0,371 -0,193 -0,240 0,427 -0,254 0,159 
µ 1 -0,902 0,894 -0,583 0,954 -0,892 0,926 0,167 -0,250 0,139 0,732 0,843 0,593 0,167 0,400 -0,264 0,361 -0,216 
Ea(eV) 1 -0,999 0,774 -0,964 0,999 -0,994 -0,200 0,187 -0,211 -0,681 -0,869 -0,398 -0,200 -0,259 0,403 -0,239 0,162 
λmax 1 -0,774 0,958 -1,000 0,993 0,195 -0,177 0,215 0,657 0,856 0,377 0,196 0,245 -0,424 0,248 -0,156 
f (SO) 1 -0,689 0,769 -0,742 -0,343 -0,113 -0,408 -0,391 -0,630 -0,260 -0,343 -0,311 0,567 0,035 -0,160 
 χ 1 -0,956 0,984 0,103 -0,328 0,078 0,771 0,891 0,536 0,103 0,303 -0,290 0,287 -0,198 
η 1 -0,992 -0,193 0,176 -0,214 -0,651 -0,853 -0,371 -0,193 -0,240 0,427 -0,254 0,159 
ω 1 0,150 -0,243 0,156 0,698 0,873 0,439 0,150 0,263 -0,386 0,279 -0,174 
A 1 0,837 0,970 0,163 0,212 0,275 1,000 0,742 -0,017 -0,105 0,009 
Vm 1 0,893 -0,403 -0,303 -0,164 0,837 0,430 -0,069 -0,147 0,164 
P 1 0,018 0,158 0,139 0,970 0,648 -0,214 -0,078 0,059 
n 1 0,912 0,753 0,163 0,462 0,066 0,080 -0,266 
S 1 0,636 0,212 0,412 -0,321 0,153 -0,222 
d 1 0,275 0,819 0,083 0,319 -0,089 
αe 1 0,741 -0,017 -0,105 0,008 
M 1 0,041 0,200 0,004 
Log P 1 -0,178 -0,084 
pMICsa 1 -0,448 
pMICbs 1 
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• ∆E(eV) and η are perfectly correlated (r = 1). 
• A andαe are perfectly correlated (r = 1). 
• A, P and αe are highly correlated (r (A, Pc) = 0.970, r (P, αe) = 0.970). 
• ELUMO  and ω are strongly negatively correlated (r = -0.998). 
 
According to the supervised learning adopted, the networks are taught by giving them examples of input patterns 
and the corresponding target outputs. Through an iterative process, the connection weights are modified until the 
network gives the desired results for the training set of data. A back-propagation algorithm is used to minimize the 
error function. This algorithm has been described previously with a simple example of application [18] and a detail 
of this algorithm is given elsewhere [19]. 
 

RESULTS 
 

Data set for analysis 
The QSAR analysis was performed using the IC50 of the 17 compounds against the Staphylococcus aureus, Bacillus 
subtilise(pMICsa and pMICbs). (Experimental values) as reported in [3], the values of the 17 chemical descriptors as 
shown in table 2.  
 
Principal component analyses(PCA) 
The totality of the twenty descriptors (variables) coding the sixteen molecules was submitted to a 
principal components analysis (PCA). The first three axes F1, F2 and F3 contributing 
respectively 51.16%, 20.59 % and 12.70 % to the total variance, the total information is 
estimated to a percentage of 91.3%, were sufficient to describe the information represented by 
the data set. Correlations between the sixteen descriptors are shown in table 3 as a correlation 
matrix, in figure 2 these descriptors are represented in a correlation circles. 
 

. 
 

Figure2: Correlation circle 
 
On the other hand, the projection PC1-PC2 (71,75% of the total variance) also shows that we can discern six groups 
of molecules with special structures propriety.  
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Figure3: Cartesian diagram according to PC1 and PC2: Separation between five groups. 
 
Multiple Linear Regressions(MLR) 
In order to propose a mathematical model and to evaluate quantitatively the substituent's physicochemical effects on 
the two activities of the totality of the set of these 17 molecules, we submitted the data matrix constituted obviously 
from the 20 physicochemical variables corresponding to the 17 molecules, to a progressive multiple regression 
analysis. This method used the coefficients R, R2, and the F-values to select the best regression performance. 
Where R is the correlation coefficient; R² is the coefficient of determination; MSE is the mean squared error; F is the 
Fisher F-statistic. 
 
 
The QSAR models built using multiple linear regression (MLR) method is represented by the following equation: 
 
pMICsa = 14,135 + 1,710 Ea + 2,512x 10-02

λmax + 60,057 f (SO)+ 5,930 x 10-02
χ+ 10-02A- 1,310x 10-02Vm - 0,037 P - 

3,040 n + 6,057 x 10-02S -19,856 d + 7,494 x 10-02M - 0,205 LogP.      (Equation 1) 
 
 
pMICbs  = 74,898 - 4,873 Ea - 5,810 x 10-02

λmax - 94,816 f (SO) - 0,923 χ - 0,612 A- 0,182 Vm+ 0,229 P - 53,165 n - 
0,182 S +51,480d   - 0,167 M  + 1,273 LogP.                                          (Equation 2) 
 
The Fisher's F test is used. Given the fact that the probability corresponding to the F value is lower than 0.05 for 
pMICsa, it means that we would be taking a lower than 0.28% risk in assuming that the null hypothesis is wrong. 
Therefore, we can conclude with confidence that the models do bring a significant amount of information. For 
pMICbs, the F value (F value = 0.265) is up than 0.05, the model is not significant. (Tables 4 and 5) 
 

Table4: Analysis of variance (global model) 
 

pM
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 Source DDL Sum of squares Mean square F Pr> F 

Model 12 0.343 0.029 0.540 0.816 

Error 4 0.212 0.053   

total corrected 16 0.555    

pM
IC

bs
 Source DDL Sum of squares Mean square F Pr> F 

Model 12 0.279 0.023 0.580 0.791 

Error 4 0.160 0.040   

total corrected 16 0.440    
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Table5: Correlation coefficient (R), Coefficient of determination (R²), Mean squared error (MSE), Fishers F-statistic (F) and 
Significances level (F value) 

 
 pMIC sa pMIC bs 

R² 0,618 0.635 

R 0.786 0.797 

MSE 0.053 0.040 

F 0.540 0.580 

F value 0.816 0.791 

 
The values of predicted activities (pMICsa) and (pMICbs) calculated from equations (1and 2), and the observed 
values are given in table 10. The correlations of predicted and observed are illustrated in figure 4. 
 

         
 

Figure 4: Correlations of observed and predicted activities calculated using MLR 
 

The descriptors proposed in equations (1and 2) by MLR were, therefore, used as the input parameters in the partial 
least squares (PLS), and the Multiples nonlinear regression (MNLR) and artificial neural network (ANN). 
 
Partial least squares PLS 
Partial Least Squares regression (PLS) is an efficient and optimal for a criterion method based on covariance. It is 
recommended in cases where the number of variables is high, and where it is likely that the explanatory variables 
are correlated. 
 
We submitted the data matrix constituted obviously from the descriptors proposed by MLR corresponding to the 17 
molecules, to the partial least squares (PLS). This method used the coefficients R, R2, and the F-values to select the 
best regression performance. 
 
The QSAR models built using partial least squares (PLS) method is represented by the following equation: 
pMICsa =  1,146 + 5,835 x 10-08 Et - 6,417x 10-02EHOMO  - 1,423 x 10-02 ELUMO  - 0,017∆E + 0,003 µ - 2,042x 10-
02Ea +1,966 x 10-04

λmax  - 2,535 f (SO)+ 2,354 x 10-02  χ-0,035 η + 7,146 x 10-03 ω - 2,636 x 10-03 A - 9,974 x 10-04Vm 
-2,451 x 10-04 P + 0,500 n + 1,908 x 10-03 S+ 0,127 d - 0,006 αe + 4,277 x10-04 M - 1,196 x 10-02Log P. (Equation 3) 
 
pMICbs =  2,053 - 3,019 x 10-08 Et + 0,033 EHOMO  + 7,367 x 10-03 ELUMO  + 9,242 x 10-03 ∆E - 1,808 x 10-03

µ + 
1,057 x 10-02Ea -1,017 x 10-04λmax  +1,311 f (SO) - 1,218 x 10-02 χ + 1,848x 10-02 η - 3,697x 10-03 ω + 1,363x 10-03 A 
+ 5,160x 10-04Vm + 1,268x 10-04 P - 0,258 n  -9,873x 10-04 S - 6,622 x 10-02 d + 3,448 x 10-03 αe - 2,212x 10-04 M + 
6,188 x10-03 Log P.   (Equation 4) 
 
The correlation coefficient (R), coefficient of determination (R²), Mean Squared Error (MSE) and Standard 
deviation (S) for the two modelsare illustrated in table 6. 
 

Table6: Correlation coefficient (R), Coefficient of determination (R²), Mean squared error (MSE) and Standard deviation (S). 
 

 pMICsa pMICbs 
R² 0.926 0.276 
R 0.962 0.525 

MSE 0.001 0.012 
S 0.037 0.110 
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The values of predicted activities (pMICsa) and (pMICbs) calculated from equations (3 and 4), and the observed 
values are given in table 9. The correlations of predicted and observed are illustrated in figure 5. 
 

                       
 

Figure5: Correlations of observed and predicted activities calculated using PLS 
 
Squares (PLS), it is likely that any non-linear relationship took place. Nonlinear regression performed by XLSTAT 
software and the neural network are suitable concepts to accomplish this task. 
 
Multiples nonlinear regression (MNLR) 
We have used also the technique of nonlinear regression model to improve the structure - activity relationship to 
quantitatively evaluate the effect of substituent. It takes into account several parameters. This is the most common 
tool for the study of multidimensional data. We have applied to the data matrix constituted obviously from the 
descriptors proposed by MLR corresponding to the 13 molecules. The coefficients R, R2, and the F-values are used 
to select the best regression performance. 
 
We used a pre-programmed function of XLSTAT following: 

 
Y =  a + (b X1+ c X2 + d X3+ e X4 …) + (f X1

2+ g X2
2+ h X3

2+ i X4
2…) 

 
Where A, b, c, d,...: represent the parameters and X1, X2, X3, X4,...: represent the variables. 
 
The resulting equations were: 
 
pMICsa = -5146,432 - 25,979 A + 1,785 Vm + 4,252 x 10-02P + 6096,303 n + 1,644 S -23,372 d + 49,012 αe + 
0,102 M  + 3,008 Log P  + 2,316 x 10-02A2- 7,491 x 10-04 Vm

2- 2,557 x 10-04 P2 - 1803,350 n2 + 3,436 x 10-04 S2 - 
0,290 Log P2.(Equation 5) 
 
 
pMICbs  = 1872,319 + 12,309 A - 1,794 Vm + 0,465 P - 2295,463 n - 1,550 S + 65,330 d- 23,490 αe - 0,223 M  - 
5,133 Log P - 1,741 10-02 A2 +1,128 10-03 Vm

2+ 1,125 10-04 P2 + 697,713 n2 - 6,248 10-03 S2 + 0,593 Log 
P2.(Equation 6) 
 
The correlation coefficient (R), coefficient of determination (R²), Mean Squared and Error (MSE) for the two 
models are illustrated in table 7. 
 

Table7: Correlation coefficient (R), Coefficient of determination (R²), and Mean squared error (MSE) 
 

 pMIC sa pMIC bs 
R² 0.998 0.998 
R 0.999 0.999 
MSE 0.0001 0.0001 

 
The values of predicted activities calculated from equations (5and 6), and the observed values are given in table 9. 
The correlations of predicted and observed are illustrated in figure 6. 
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Figure6: Correlations of observed and predicted activities calculated using MNLR  
 
Artificial neural networks (ANN) 
Neural networks (ANN) can be used to generate predictive models of quantitative structure-activity relationships 
(QSAR) between a set of molecular descriptors obtained from the MLR and observed activity. 
 
The correlations coefficients and Standard Error of Estimate, obtained with the Neural network (Table 8), show that 
the selected descriptors by MLR are pertinent and that the model proposed to predict activity is relevant. 
 

Table8: Correlation coefficient (R) and Coefficient of determination (R2)  
 

 Samples R R2 
Training 12 0,904 0,817 
Validation 3 0,887 0,787 
Test 2 0,801 0,641 

 
The values of predicted activities and the observed values are given in table 9. 
 
The obtained squared correlation coefficient (R2) value confirms that the MNLR result were the best to build the 
quantitative structure activity relationship models.  
 
In this part, we investigated the best linear QSAR regression equations established in this study. Based on this result, 
a comparison of the quality of ACP, MLR, PLS, MNLR and ANN models shows that the MNLR models have 
substantially better predictive capability because the MNLR approach gives better results than MLR, PLS and ANN. 
MNLR was able to establish a satisfactory relationship between the molecular descriptors and the activity of the 
studied compounds.  
 
The values of predicted activities calculated using ANN and the observed values are given in table 9. The 
correlations of predicted and observed are illustrated in figure 7. 
 

  
 

Figure7: Correlations of observed and predicted activities calculated using ANN  
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DISCUSSION 
 

The principle (for the two studies) is to perform in the first time, a main component analysis (PCA), which allows us 
to eliminate descriptors that are highly correlated (dependent), then perform a decreasing study of MLR based on the 
elimination of descriptors (one by one) aberrant until a valid model (including the critical probability: p-value<0.05 
for all descriptors and the model complete. 
 
The figure 3(PCA) shows a distribution of molecules in six groups: the group 1 (G1) which has R2 = NO2, the group 
2 (G2) variously substituted by halogens (Br and Cl), the group 3 (G3) which substituted by - O-CH3 and CH3, the 
group 4 (G4) fluor-substitued in R2 and the group 5 (G5) which contains the rest of the compounds. 
 
Comparison of key statistical terms like R or R2 of different models obtained by using different statistical tools and 
different descriptors has been shown in table 9. 
 

Table9: Observed, predicted activities and residue according to different methods. 
 

In vitro antimicrobial activity IC 50 values (µM) 

 
pMIC sa 

Observed 
MLR PLS MNLR ANN 

Pred. Resid. Pred. Resid. Pred. Resid. Pred. Resid. 
1 1.430 1.489 -0.059 1.543 0.027 1.430 0.000 1.4531 -0.0231 
2 1.460 1.449 0.011 1.420 0.035 1.460 0.000 1.5019 -0.0419 
3 1.500 1.491 0.009 1.439 0.030 1.500 0.000 1.5222 -0.0222 
4 1.510 1.561 -0.051 1.555 0.027 1.510 0.000 1.5346 -0.0246 
5 2.070 1.970 0.100 1.564 0.026 2.070 0.000 2.0490 0.0210 
6 1.770 1.876 -0.106 1.471 0.030 1.770 0.000 1.5959 0.1741 

7 1.750 1.593 0.157 1.477 0.030 1.750 0.000 1.6093 0.1407 
8 1.780 1.756 0.024 1.765 0.052 1.780 0.000 1.7677 0.0123 
9 1.770 1.575 0.195 1.553 0.026 1.770 0.000 1.3932 0.3768 
10 1.750 1.676 0.074 1.552 0.027 1.750 0.000 1.6767 0.0733 
11 1.520 1.676 -0.156 1.571 0.029 1.520 0.000 1.5108 0.0092 
12 1.450 1.530 -0.080 1.511 0.027 1.450 0.000 1.5033 -0.0533 
13 1.780 1.698 0.082 1.415 0.034 1.780 0.000 1.6780 0.1020 
14 1.800 1.824 -0.024 1.704 0.045 1.800 0.000 1.7935 0.0065 
15 1.490 1.533 -0.043 1.484 0.030 1.490 0.000 1.5752 -0.0852 
16 1.470 1.719 -0.249 1.494 0.029 1.470 0.000 1.7418 -0.2718 
17 1.830 1.714 0.116 1.512 0.026 1.830 0.000 1.7106 0.1194 

pMIC bs 
1 2.0300 1.872 0.158 1.848 0.080 2.030 0.000 1.7936 0.2364 
2 2.0700 1.974 0.096 1.912 0.103 2.070 0.000 1.9794 0.0906 
3 2.1000 2.106 -0.006 1.902 0.090 2.100 0.000 2.0962 0.0038 
4 1.8100 1.788 0.022 1.842 0.080 1.810 0.000 1.8503 -0.0403 
5 1.7700 1.790 -0.020 1.838 0.078 1.770 0.000 1.8433 -0.0733 
6 1.7700 1.635 0.135 1.886 0.090 1.770 0.000 1.8773 -0.1073 
7 1.4500 1.696 -0.246 1.882 0.090 1.450 0.000 1.8196 -0.3696 
8 1.7800 1.794 -0.014 1.734 0.153 1.780 0.000 1.8078 -0.0278 
9 1.7700 1.826 -0.056 1.843 0.078 1.770 0.000 1.8775 -0.1075 
10 2.0500 2.141 -0.091 1.844 0.079 2.050 0.000 1.8586 0.1914 
11 1.8200 1.854 -0.034 1.834 0.085 1.820 0.000 1.7906 0.0294 
12 1.7500 1.746 0.004 1.865 0.081 1.750 0.000 1.8121 -0.0621 

13 1.7800 1.903 -0.123 1.915 0.101 1.780 0.000 1.9225 -0.1425 
14 1.8000 1.786 0.014 1.765 0.133 1.800 0.000 1.7765 0.0235 
15 1.7900 1.796 -0.006 1.879 0.088 1.790 0.000 1.8191 -0.0291 
16 2.0700 1.941 0.129 1.874 0.085 2.070 0.000 1.8332 0.2368 
17 1.8300 1.791 0.039 1.865 0.079 1.830 0.000 1.7908 0.0392 

 
CONCLUSION 

 
In this work we have investigated the QSAR regression to predict toxicity of several compounds based on 1,3-
disubstituted-1H-naphtho[1,2-e][1,3]oxazines. 
 
The studies of the quality of the MLR, PLS, RNLM and ANN models have shown that: 
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• The PLS method gave low coefficients of determination (R2), thus it was had no efficiency in predicting the 
values of activities. 
• The nonlinear regression and the neural network ANN results have substantially better predictive capability than 
the other methods. 
• With ANN approach, we have established a relationship between several descriptors and antimicrobial activity 
values (IC50) of 1,3-disubstituted-1H-naphtho[1,2-e][1,3]oxazines against Staphylococcus aureus and Bacillus 
subtilis ((pMICsa) and (pMICbs))in satisfactory manners.  
 
Finally, we can conclude that studied descriptors, which are sufficiently rich in chemical, electronic and topological 
information to encode the structural feature may be used with other descriptors for the development of predictive 
QSAR models.  
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