Available online at www.scholar sresear chlibrary.com

Scholars Research Library o v s
L]
Scholars Research g %
Archives of Physics Resear ch, 2012, 3 (1):36-46 % o 9 9
(http://scholar sresear chlibrary.com/ar chive.html) % R

Library
I SSN : 0976-0970
CODEN (USA): APRRC7

Under standing the decay of atom in quantum theory of radiation
using the concept of area

Farzana B Hazarika®, Bidyut Goswami', H. Konwar? and G.D. Baruah®
!salt Brook Academy, Dibrugarh

Department of Physics, Dibrugarh University, Dibrugarh
3Centre for Laser & Optical Science, New Uchamati, Doom Dooma

ABSTRACT

In the present work we have worked out a vector model for spontaneous emission based on the
principle of moving vectors. This simplified approach reflects the work of Weisskopf and Wigner
of spontaneous emission.
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INTRODUCTION

The Weisskopf — Wigner theory of spontaneous ewnisgl] is well known. The mechanism of
spontaneous emission can be understood from quathieomny of radiation [2]. It is an isotropic
perturbation always present and attributed in conoe with the quantum theory of radiation to
the all pervading zero point fluctuation of theattemagnetic field. The light excites the atoms:
the zero point fluctuation de-excites them resgliim the re- radiation of light. An interesting
consequence of the quantization of the radiatidhasfluctuation associated with the zero point
energy or the so called vacuum fluctuation. Thésetdations have no classical analogy and are
responsible for many interesting phenomena inclyidipontaneous emission. In the usual atom
field interaction picture it can be shown that &mnain the upper level can make transition back
and forth to the lower state in time even in theemze of an applied field. However it is seen
experimentally that an atom in an excited stateagedo the ground state with a characteristics
life time but it does not make back and forth tramss. For a proper account of the atomic
decay, a continuum of modes corresponding to atmadiion cavity, which is infinite in extent
needs to be included. In Weisskopf-Wigner approximmathe equation of motion for the
probability amplitude is given by
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Ca®) =-LCo(®) (1)
wherey is the decay constant. A solution for equationgi¥es

Paa = 1Ca()17= exp(s1) 2)
That is an atom in the excited stafein vacuum decays exponentially in time with tte time
1
T=-.

14

In the present work we report a vector model wlactually reflects the work of Wigner. In a
recent work [3] this model has been applied to ym®alhe situation of quantum interference
laser.

1. Quantization of the single mode and quantum fluctuation:

Consider a free field of frequenaywhich is linearly polarized in the x direction ancavity (a
laser cavity) of length L. In this case the Maxwatjuations with the boundary conditions that

the electric field vector vanishes at z = o ani@dds to the following expression for the cavity
field [4].

5(2.) =(3%) Ya() sirk 2 ®

where k is the wave vector and is the frequencﬁ =(“§)z, V is the volume of the cavity art}

is the permitivity of free space. The amplitudetioé electric field is governed by the time
dependent factor q(t), which has the dimension lehgth, so that the electric field can be
regarded as a kind of canonical position. The magfield Hy(z,t) can similarly be expressed as

H (2.0 =(5) (25) Y% () coskz (@)
and its amplitude is governed by a kind of candmuoamentumy (t).

The field energy H can be expressed as a sumdfieland magnetic field energy in the cavity.
—L 2 2
H=() J dV{eEZ(Z.1) + poH3 (Z,1)} (5)
Using equation (3) and (4), equation (5) can béterias
H=_(p? + w?q?) (6)

This indicates that the field mode energy is pedgithat of a unit mass harmonic oscillator, with
electric and magnetic fields playing the role o$ition and momentum.

37
Scholars Research Library



Farzana B Hazarikaet al Arch. Phy. Res., 2012, 3 (1):36-46

In the case of quantization the single mode fiéld\je simply take the correspondence rule that
the variables q and p are replaced by their opeyatguivalentg, p satisfying the commutation
rule

§.p1=ip (7)
so the electric field mode operator is written as
Exz) =(2%) Y (0 sink Z ®)
and
~ €0y [2w? A
1y (2= (25) "*p(t) coskz (©)

and the energy is written as

A= %(;32 + w?G?) (10)

The mode structure in quantum theory is identioah&t of a classical theory, so different and
interpretation phenomenon will have the same dpdgaendant in both theories. The main

points are the lake of commutability of the electand magnetic field operators, and the
discreteness of the field energy with the fieldestavith n excitations having the energy.

Er=(n+)ho (11)

The ground state or vacuum state is the state matkexcitations (n=0) and in quantum theory
possesses a residual energy;—bcb.

We now consider the case of annihilation and areatiperators. Earlier we have characterized
the electric and magnetic fields by opera@rsand p which are Hermitian. But it is traditional
to introduce the non- Hermitian (which are therefaron-observable) annihilatior®)( and
creation ¢*)operators through the combinations.

a=(2ho)"? (g + ip) (12)

a* = (2hw) "2 (g - ip) (13)
In terms of these operators we can write the feldrgy operators as

A=(a*a+ho (14)

The basic communication rule becomes

~

[a*a] =1 (15)
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and the electric field operator is
Ex(Zt) =€o(a + a*)sinkz (16)
where the paramete€yis given by

ho (X
€o= (g)? (17)
This parameter is known as the electric field gestpn.

The time dependant of the annihilation operatortzaderived from the Heisenberg equation of
motion

S=iA. ) (18)
So we have

a(t) = a(0) exp(—iwt) (19)
a*=a*(0)exp (iwt) (20)

Although the annihilation and creation operatorsndb themselves describe physical variables,
their “normal order” product

fiza‘a (21)
describe number of excitation ‘'n’ in a single madtate n)
Ailny=n ln) (22)
The numbérn) is the energy eigenstate of the Hamiltonian equalé with eigenstate,E

Al n)=ho(@a+H n) 4 & n) (23)
The lowest level o) is defined through

40) =o (24)

and the other state are given by

aln)y =vil n—1) (25)
atlny=/(n—1) n+1) (26)
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|n) = (niy¥*(a* I 0) (27)

The annihilation and creation operators decreastgeaxcitation of the mode by one quanta
and have only off diagonal matrix element betweamiper states.

(n—1laln) =vn
(28)

(n+1latn)=Vn-1 (29)

Quantum fluctuation of a single mode field:

We now consider the most important aspect of quarftuctuations of a single mode field. We
observe that although the number state descriltat@ af precisely defined energy, it does not
describe a state of well defined field.

(n|Ex(Z,t)|n) = €o sin kz fn|a*|n)+ h.c] =0 (30)

The mean field is zero, but the mean square izaa. It is, one component of the field mode
energy in equation (5)

(nlE2(z,0)
= Cosirtkz[(n|a*a* +a*a +a a*+a a In)] = 2657 sirf kz (n+) (31)

The vacuum state is not an empty but representsldh ¢f rms magnitude&, sin kz. If we
average over the spatial variation of the singleleneld, we find again that the electric field per

. _ ,bho 1
photon is€y= (ﬁ)z .
0

These vacuum fluctuations are not negligible quastiand may be easily verified by
substituting the values of the frequenciefor a specified volume of the cavity.

2. Moving vectors:
The usual representation of the energy level draga a two level atoms indicating decay rate

Yq and v, is shown in the Fig 1.

The Weisskopf- Wigner theory of spontaneous emissjostifies the inclusion of the
phenomenological decay rates, and y, in the Schrdodinger equation for the transition
probability amplitude. The probability of stimuldtabsorption including decay is given by

-nz(w—y) t

ICa (D17 = (G0%exp )i (32)
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Fig 1: Energy level diagram for two level atom indicating decay ratesy, and

This transition probability for arbitrary value ¢ifme may be plotted for different values of
detuning (-y). Using the equation (3) the graph may be workeidwhich represents the time

evaluation of population in the upper state fofettént values of detuning at 90,100,110.120 and
130 MHz. This shown in the Fig2.

|Cyltal?

-

— Timeips)
Fig 2: Transition probability for different values of detuning and y=.005.

As may be inferred from Fig 2, we may join all e maxima in a group of detunings as an
arrow and a number of these arrows can be drawhisnway. We observe that these vectors
evolve in time. These vectors can be used to reptasansition probabilities for the changes of
population in the upper state. The zero transifiosbabilities at arbitrary time of’6 (n=1, 2,
3...) indicate some type of collapse of wavefunctitinis worthwhile to note here that in the
absence of the decay process, the semiclassiaalytpeedicts Rabi oscillations for the atomic
inversion whereas the quantum theory predicts icedallapse and revival phenomenon due to
the quantum aspects of the field. The Rabi modet¢5named because of its original setting in
magnetic resonance as studied by Rabi long ago.cohapse of Rabi oscillations was noted
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fairly early in the study of Rabi[6]. Several ye&ater it was found that Rabi oscillations stadts t
revive [7] although not completely. At longer timese finds a sequence of collapses and
revivals, the revival becoming less distinct astimcreases. These collapse and revival behavior
of Rabi oscillations in the fully quantized modslstrikingly different than in the semiclassical
case. In our present work we have seen that thapsels and revival of transition probabilities is
similar to the quantum model which is known as Jess@ummings model[8].

In this connection, it is worthwhile to note tha¢ wescribe the properties of a quantum system
prepared in superposition of classically distinpalde states. These states often called
Schrodinger cat states are of great interest. Rigcérhas been shown how they may be realized
in quantum optics using non-linear interactionhdts also been demonstrated the interference
properties which characterise superposition s{&fesnd particularly the Schrédinger cat states.
In our present work, the collapse of wave functainarbitrary time of 36n, n= 0,1,2........
represents some sort of interference resembling8uiger cat state.

The moving vectors can be represented by the exuati

dkn

= Qp X k., (33)

whereQ, is the driving field vector ,
kn is the amplitude vector.

We have worked out different phasor diagrams wiffeint decay constants and they are
shown in Fig.3(a,b).
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Probability vs Time(.02)
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Fig 3(a): Probability versus Time graphsfor decay=.001, .005, .0land their corresponding phasor diagrams.

We may note that the vectors in the phasor diagrfrsiscloses up and uncoils again and

expands. It is also observed that when decay id sineaexpansion is slow but for bigger decay

the expansion is more. This is a general natuialadhe phasor diagrams we have constructed
with different decay constants and with the samteo$edetuning values as shown in Fig

3(a),(b).

The phasor diagrams also indicate that as the deiceyeases the area decreases exponentially
which may be illustrated by plotting decay versusaagraph as shown in Fig 4. As regards its
physical significance it may be noted that the peai@ry is related to the lifetime as= 1/vy.
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This follows from the theory of spontaneous emissia the present case the area behaves like
lifetime. The result is new.

Probability vs Time(.02)
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Fig 3(b): Probability versus Time graphsfor decay=.02, .03, .05and their corresponding phasor diagrams.
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Decay vs Area
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Fig 4. Decay versus Area

It is worthwhile to note here that the concept ettors to explain the equation of motion of
Galileo is a well-known concept in school leveltteks for example the interesting feature of
velocity time graph for any moving object is thia¢ tarea under v-t graph equals displacement of
the object over a given time interval. There ateeoexamples where the concept of area is used
to represent vectors.

CONCLUSION

From what has been discussed above it is reasot@bleaw a conclusion. We have seen that
areas of phasor diagrams at different values ofayldeehaves as lifetime and indicates
exponential decay similar to that shown by the guantheory of radiations. The vector model
may be quite handy in explaining many phenomenguiantum optics and there is scope for
improvement. We have also indicated an analogy i€ States with our present work.
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