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ABSTRACT 
  
In the present work we have worked out a vector model for spontaneous emission based on the 
principle of moving vectors. This simplified approach reflects the work of Weisskopf and Wigner 
of spontaneous emission. 
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INTRODUCTION 

 
The Weisskopf – Wigner theory of spontaneous emission [1] is well known. The mechanism of 
spontaneous emission can be understood from quantum theory of radiation [2]. It is an isotropic 
perturbation always present and attributed in connection with the quantum theory of radiation to 
the all pervading zero point fluctuation of the electromagnetic field. The light excites the atoms: 
the zero point fluctuation de-excites them resulting in the re- radiation of light. An interesting 
consequence of the quantization of the radiation is the fluctuation associated with the zero point 
energy or the so called vacuum fluctuation. These fluctuations have no classical analogy and are 
responsible for many interesting phenomena including spontaneous emission. In the usual atom 
field interaction picture it can be shown that an atom in the upper level can make transition back 
and forth to the lower state in time even in the absence of an applied field. However it is seen 
experimentally that an atom in an excited state decays to the ground state with a characteristics 
life time but it does not make back and forth transitions. For a proper account of the atomic 
decay, a continuum of modes corresponding to a quantization cavity, which is infinite in extent 
needs to be included. In Weisskopf-Wigner approximation the equation of motion for the 
probability amplitude  is given by 
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      ��� ���  = - �	 �����                                    (1) 

 
where γ is the decay constant. A solution for equation (1) gives 
 
        
�� � |�����|	= exp(-γt)                       (2) 
                
That is an atom in the excited state 
�� in vacuum decays exponentially in time with the life time 

τ = 
�
�. 

 
In the present work we report a vector model which actually reflects the work of Wigner. In a 
recent work [3] this model has been applied to analyze the situation of quantum interference 
laser. 
 
1. Quantization of the single mode and quantum fluctuation: 
Consider a free field of frequency ω which is linearly polarized in the x direction in a cavity (a 
laser cavity) of length L. In this case the Maxwell equations with the boundary conditions that 
the electric field vector vanishes at  z = o and L leads to the following expression for the cavity 
field [4]. 
 

         Ex(Z,t) =�	��

��� � 1/2q(t) sin��� Z                          (3) 

 

where  ��� is the wave vector and ω is the frequency. ��� =(
ω

�)z, V is the volume of the cavity and Є0 

is the permitivity of free space. The amplitude of the electric field is governed by the time 
dependent factor q(t), which has the dimension of  length, so that the electric field can be 
regarded as a kind of canonical position. The magnetic field Hy(z,t) can similarly be expressed as  
 

       Hy (Z,t) =( 
��
� ) �	��

��� � 1/2��  (t) coskZ                            (4) 

 
and its amplitude is governed by a kind of canonical momentum ��  (t).  
 
The field energy H can be expressed as a sum of electric and magnetic field energy in the cavity. 
 

       H = ��
	� � � !"#$%	(Z,t) + µ0&'	(Z,t)}                        (5) 

 
Using equation (3) and (4), equation (5) can be written as 
 

       H= 
�
	((	 ) *	�	�                               (6) 

 
This indicates that the field mode energy is precisely that of a unit mass harmonic oscillator, with 
electric and magnetic fields playing the role of position and momentum. 
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In the case of quantization the single mode field [4] we simply take the correspondence rule that 
the variables q and p are replaced by their operators equivalents �,, (̂ satisfying the commutation 
rule 
 
               [�., (, ] =iђ                              (7) 
 
so the electric field mode operator is written as 
 

$/x(Z,t) =�	��

��� � 1/2�. (t) sin��� Z                               (8)       

 
and 

&0 y (Z,t) =( 
��
� ) �	��

��� � 1/2(̂(t) coskZ                              (9) 

 
and the energy is written as  
 

&0= 
�
	((̂	 ) *	�.	�                              (10) 

 
The mode structure in quantum theory is identical to that of a classical theory, so different and 
interpretation phenomenon will have the same spatial dependant in both theories. The main 
points are the lake of commutability of the electric and magnetic field operators, and the 
discreteness of the field energy with the field states with n excitations having the energy. 
 

   En =(n+
�
	)ђω                            (11) 

 
The ground state or vacuum state is the state with no excitations (n=0) and in quantum theory 

possesses a residual energy of  
�
	ђω. 

 
We now consider the case of annihilation and creation operators. Earlier we have characterized 
the electric and magnetic fields by operators �,, and (̂ which are Hermitian. But it is traditional 
to introduce the non- Hermitian (which are therefore non-observable) annihilation (�.) and 
creation (�.4�operators through the combinations. 
 
�. = �2ђω�6�/	 ( ω�. + i(̂)                           (12) 
 
�.4 = �2ђω�6�/	 ( ω�. - i(̂)                                                                                      (13) 
 
In terms of these operators we can write the field energy operators as  
 

&0= 
�
	(�.4�. ) �

	�ђω                                                                                        (14) 

 
The basic communication rule becomes 
 
8�0 4�.9 : 1                                                                                                                                (15) 
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and the electric field operator is       
 
$/x(Z,t) =Є0( �. ) �.4)sinkZ                                                                                                       (16) 
 
where the parameters Є0 is given by 
 

Є0 = � ђω
Є�<�

=
�                                                                                                                              (17) 

 
This parameter is known as the electric field per photon. 
 
The time dependant of the annihilation operator can be derived from the Heisenberg equation of 
motion 
 
>�.
>?= 

@
ђ
[&0, �.9                                                                                                                              (18) 

 
so we have  
 
�.(t) = �.�0� exp�EF*��                                                                                                           (19) 
     
�.4 = �.4�0�exp �F*��                                                         (20) 
 
Although the annihilation and creation operators do not themselves describe physical variables, 
their “normal order” product 
 
G. = �.4�.                                                                               (21) 
 
describe number of excitation ‘n’ in a single mode state  
G� 
 
 G.  
G� = n  
G�                                                                        (22) 
 
The number  
G� is the energy eigenstate of the Hamiltonian equation 14 with eigenstate En. 
     

   &0    
G� = ђω(�.4�. ) �
	�  
G� = En  
G�                               (23) 

 
The lowest level   
H� is defined through            
 
       �. 
0�   = o                                                            (24) 
 
and the other state are given by 
 
   �. 
G� = √G   
G E 1�                                                           (25) 
      
�.4  
G� = J�G E 1�   
G ) 1�                                               (26) 
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G� = (n!)-1/2� �.4 �K   
0�                                                                                   (27) 
  
The annihilation and creation operators decreases or the excitation of the mode by one quanta 
and have only off diagonal matrix element between number states. 
 
LG E 1|�.|GM = √G                                                       
                 (28) 
     
LG ) 1|�.4|GM =√G E 1                                                      (29) 
 
Quantum fluctuation of a single mode field: 
We now consider the most important aspect of quantum fluctuations of a single mode field. We 
observe that although the number state describe a state of precisely defined energy, it does not 
describe a state  of well defined field. 
 
NGO$/%�Z, t�OGR = Є0 sin kz [LG|�.4|GM+ h.c] = 0                (30) 
 
The mean field is zero, but the mean square is not zero. It is, one component of the field mode 
energy in equation (5) 
 
NGOE0T	�Z, t�R  
 

= Є0sin2kz[LG|�.4�.4 ) �.4�.   ) �.  �.4 ) �.  �.  |GM]  = 2 Є0
2 sin2 kz (n+

�
	)                                (31)  

 
The vacuum state is not an empty but represents a field of rms magnitude Є0 sin kz. If we 
average over the spatial variation of the single mode field, we find again that the electric field per 

photon is Є0 = � ђω
Є�<�

=
� . 

 
These vacuum fluctuations are not negligible quantities and may be easily verified by 
substituting the values of the frequencies ω for a specified volume of the cavity. 
      
2. Moving vectors: 
The usual representation of the energy level diagram for a two level atoms indicating decay rate 
U�  �G� UV is shown in the Fig 1. 
 
The Weisskopf- Wigner theory of spontaneous emission justifies the inclusion of the 
phenomenological decay rates  U�  �G� UV in the Schrödinger equation for the transition 
probability amplitude. The probability of stimulated absorption including decay is given by 
 

 |�����|	 = �WX�
	ђ �	exp (UVt)

Y@K��Z[\� ]
�

�Z[\��
�

                                               (32) 
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Fig 1: Energy level diagram for two level atom indicating decay rates γγγγa  and γγγγb. 

    
This transition probability for arbitrary value of time may be plotted for different values of 
detuning (ω-γ). Using the equation (3) the graph may be worked out which represents the time 
evaluation of population in the upper state for different values of detuning at 90,100,110.120 and 
130 MHz. This shown in the Fig2. 

 
Fig 2: Transition probability for different values of detuning and γ=.005. 

 
As may be inferred from Fig 2, we may join all the five maxima in a group of detunings as an 
arrow and a number of these arrows can be drawn in this way. We observe that these vectors 
evolve in time. These vectors can be used to represent transition probabilities for the changes of 
population in the upper state. The zero transition probabilities at arbitrary time of 62n (n=1, 2, 
3…) indicate some type of collapse of wavefunction. It is worthwhile to note here that in the 
absence of the decay process, the semiclassical theory predicts Rabi oscillations for the atomic 
inversion whereas the quantum theory predicts certain collapse and revival phenomenon due to 
the quantum aspects of the field. The Rabi model [5] so named because of its original setting in 
magnetic resonance as studied by Rabi long ago. The collapse of Rabi oscillations was noted 
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fairly early in the study of Rabi[6]. Several years later it was found that Rabi oscillations starts to 
revive [7] although not completely. At longer times one finds a sequence of collapses and 
revivals, the revival becoming less distinct as time increases. These collapse and revival behavior 
of Rabi oscillations in the fully quantized model is strikingly different than in the semiclassical 
case. In our present work we have seen that the collapses and revival of transition probabilities is 
similar to the quantum model which is known as Jaymes-Cummings model[8]. 
 
In this connection, it is worthwhile to note that we describe the properties of a quantum system 
prepared in superposition of classically distinguishable states. These states often called 
Schrödinger cat states are of great interest. Recently, it has been shown how they may be realized 
in quantum optics using non-linear interaction. It has also been demonstrated the interference 
properties which characterise superposition states [9] and particularly the Schrödinger cat states. 
In our present work, the collapse of wave function at arbitrary time of 36n, n= 0,1,2…….. 
represents some sort of interference resembling Schrödinger cat state. 
 
The moving vectors can be represented by the equation 
 
>^_
>? : ΩK ` �K                             (33) 

 
where Ωn is the driving field vector , 
 kn is the amplitude vector. 
 
We have worked out different phasor diagrams with different decay constants and they are 
shown in Fig.3(a,b). 
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Fig 3(a): Probability versus Time graphs for decay=.001, .005, .01and their corresponding phasor diagrams. 

 
We may note that the vectors in the phasor diagrams first closes up and uncoils again and 
expands. It is also observed that when decay is small the expansion is slow but for bigger decay 
the expansion is more. This is a general nature of all the phasor diagrams we have constructed 
with different decay constants and with the same set of detuning values as shown in Fig 
3(a),(b).  
 
The phasor diagrams also indicate that as the decay γ increases the area decreases exponentially 
which may be illustrated by plotting decay versus area graph as shown in Fig 4. As regards its 
physical significance it may be noted that the parameter γ is related to the lifetime as τ = 1/ γ. 
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This follows from the theory of spontaneous emission. In the present case the area behaves like 
lifetime. The result is new. 

 
Fig 3(b): Probability versus Time graphs for decay=.02, .03, .05and their corresponding phasor diagrams. 
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Fig 4: Decay versus Area 

 
It is worthwhile to note here that the concept of vectors to explain the equation of motion of 
Galileo is a well-known concept in school level text. As for example the interesting feature of 
velocity time graph for any moving object is that the area under v-t graph equals displacement of 
the object over a given time interval. There are other examples where the concept of area is used 
to represent vectors. 
 

CONCLUSION 
 

From what has been discussed above it is reasonable to draw a conclusion. We have seen that 
areas of phasor diagrams at different values of decay behaves as lifetime and indicates 
exponential decay similar to that shown by the quantum theory of radiations. The vector model 
may be quite handy in explaining many phenomena in quantum optics and there is scope for 
improvement. We have also indicated an analogy with S.C. States with our present work. 
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